Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Role of partial functionals in the study of variational systems
  • Strona domowa
  • /
  • Role of partial functionals in the study of variational systems
  1. Strona domowa /
  2. Archiwum /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Role of partial functionals in the study of variational systems

Autor

  • Andrei Stan https://orcid.org/0000-0002-4903-4119

DOI:

https://doi.org/10.12775/TMNA.2024.033

Słowa kluczowe

Variational method, Stokes system, mountain pass geometry

Abstrakt

Applying techniques originally developed for systems lacking a variational structure, we establish conditions for the existence of solutions in systems that possess this property but their energy functional is unbounded both above and below. We show that, in general, our conditions differ from those in the classical mountain pass approach by Ambrosetti-Rabinowitz when dealing with systems of this type. Our theory is put into practice in the context of a coupled system of Stokes equations with reaction terms, where we establish sufficient conditions for the existence of a solution. The systems under study are intermediary between gradient-type systems and Hamiltonian systems.

Bibliografia

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

I. Benedetti, T. Cardinali and R. Precup, Fixed point-critical point hybrid theorems and application to systems with partial variational structure, J. Fixed Point Theory Appl. 23 (2021), 63.

A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, Philadelphia, 1979.

O. Bolojan and R. Precup, Semilinear evolution systems with nonlinear constraints, Fixed Point Theory 17 (2016), 275–288.

D. Brumar, A fixed point approach to the semi-linear Stokes problem, Studia Univ. Babeş–Bolyai Math. 68 (2023), no. 3, 563–572.

D.G. De Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Bombay, 1989.

G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edition, Springer, New York, 2011.

V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer, Berlin, 1986.

M. Kohr and R. Precup, Analysis of Navier–Stokes models for flows in bidisperse porous media, J. Math. Fluid Mech. 25 (2023), 38.

R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Model. Dyn. Syst. 49 (2009), 703–708.

R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems, Adv. Nonlinear Anal. 3 (2014), 197–207.

R. Precup and A. Stan, Linking methods for componentwise variational systems, Results Math. 78 (2023), 246.

H. Sohr, The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Springer Basel, Basel, 2001.

A. Stan, Nonlinear systems with a partial Nash type equilibrium, Studia Univ. Babeş–Bolyai Math. 66 (2021), 397–408.

A. Stan, Nash equilibria for componentwise variational systems, J. Nonlinear Funct. Anal. 6 (2023).

R. Teman (ed.), Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, American Mathematical Society, UK edition, 2001.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-02-14

Jak cytować

1.
STAN, Andrei. Role of partial functionals in the study of variational systems. Topological Methods in Nonlinear Analysis [online]. 14 luty 2025, T. 65, nr 1, s. 383–399. [udostępniono 29.6.2025]. DOI 10.12775/TMNA.2024.033.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 65, No 1 (March 2025)

Dział

Articles

Licencja

Prawa autorskie (c) 2025 Andrei Stan

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa