On Conley theory for generalized Gutierrez-Sotomayor flows
DOI:
https://doi.org/10.12775/TMNA.2024.032Słowa kluczowe
Conley index, Lyapunov function, GS singularities, Euler-Poincaré characteristicAbstrakt
This paper presents a study, based on Conley's theory, of continuous flows on singular surfaces that admit singularities such as $n$-sheet cones, $n$-sheet cross-caps, $n$-sheet double crossings, $n$-sheet triple crossings, and mixed Gutierrez-Sotomayor (GS) singularities. These flows are referred to as generalized Gutierrez-Sotomayor (GS) flows. The Conley index for each type of singularity is computed. Furthermore, the results from previous works on the local and global existence of Lyapunov functions are extended to encompass generalized GS singularities. Necessary and sufficient conditions for defining a generalized GS flow on an isolating block are established. Additionally, an alternative formula, expressed in terms of a deeper dynamical perspective, for computing the Euler-Poincaré characteristic of generalized GS manifolds is introduced.Bibliografia
M.A. Bertolim, D.V.S. Lima, M.P. Mello K.A. de Rezende and M.R. Silveira, A global two-dimensional version of Smale’s cancellation theorem via spectral sequences, Ergodic Theory Dynam. Systems 36 (2016), no. 6, 1795–1838.
M.A. Bertolim, M.P. Mello and K.A. de Rezende, Poincaré–Hopf inequalities, Trans. Amer. Math. Soc. 357 (2004), 4091–4129.
C.C. Conley, Isolated Invariant Sets and the Morse Index, American Mathematical Soc., no. 38, 1978.
C.C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), no. 1, 35–61.
K.A. de Rezende, N.G. Grulha Jr, D.V.S. Lima and M.A. Zigart, Gutierrez–Sotomayor flows on singular surfaces, Topol. Methods Nonlinear Anal. 60 (2022), no. 1, 221–265.
C.T. Gutierrez and J. Sotomayor, Stable vector fields on manifolds with simple singularities, Proc. London Math. Soc. 3 (1982), no. 1, 97–112.
D.V.S. Lima, O. Manzoli Neto and K.A. de Rezende, On handle theory for Morse–Bott critical manifolds, Geom. Dedicata 202 (2019), 265–309.
D.V.S. Lima, O. Mazoli Neto, K.A. de Rezende and M. R. Silveira, Cancellations for circle-valued Morse functions via spectral sequences, Topol. Methods Nonlinear Anal 51 (2018), no. 1, 259–311.
D.V.S. Lima, S.A. Raminelli and K.A. de Rezende, Homotopical cancellation theory for Gutierrez–Sotomayor singular flows, J. Singul. 23 (2021), 33–91.
D.V.S. Lima and K.A. de Rezende, Connection matrices for Morse–Bott flows, Topol. Methods Nonlinear Anal. 44 (2014), no. 2, 471–495.
D.V.S. Lima, M.R. da Silveira and E.R. Vieira, Covering action on Conley index theory, Ergodic Theory Dynam. Systems 43 (2023), no. 5, 1633–1665.
C. McCord, K. Mischaikow and M. Mrozek, Zeta functions, periodic trajectories, and the Conley index, J. Differential Equations 121 (1995), no. 2, 258–292.
K. Mischaikow and M. Mrozek, Isolating neighbourhoods and chaos., Japan J. Industrial Appl. Math. 12 (1995), 205–236.
H. Montúfar and K.A. de Rezende, Conley theory for Gutierrez–Sotomayor fields, J. Singul. 22 (2020), 241–277.
M. Mrozek and P. Pilarczyk, The Conley index and rigorous numerics for attracting periodic orbits, Variational and Topological Methods in the Study of Nonlinear Phenomena (Pisa, 2020), Progrress in Nonlinear Differential Equations and Their Applications, vol. 49, 2002, pp. 65–74.
M.M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), no. 2, 101–120.
M.C. Peixoto and M.M. Peixoto, Structural stability in the plane with enlarged boundary conditions, An. Acad. Brasil. Ciênc 31 (1959), no. 2, 135–160.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0