Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological degree for some parabolic equations with Riemann-Liouville time-fractional derivatives
  • Strona domowa
  • /
  • Topological degree for some parabolic equations with Riemann-Liouville time-fractional derivatives
  1. Strona domowa /
  2. Archiwum /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Topological degree for some parabolic equations with Riemann-Liouville time-fractional derivatives

Autor

  • Abderrahim Charkaoui https://orcid.org/0000-0003-1425-7248
  • Anouar Ben-loghfyry https://orcid.org/0000-0003-3883-6957

DOI:

https://doi.org/10.12775/TMNA.2024.017

Słowa kluczowe

time-fractional derivatives, Riemann-Liouville, weak solutions, topological degree, Faedo-Galerkin method, fractional problems

Abstrakt

This work tackles a class of nonlinear parabolic equations in divergence form having fractional time order derivatives. We consider parabolic equations involving second-order spacial operators with Riemann-Liouville time-fractional derivatives. We establish the existence and uniqueness of weak solutions to the studied models. Our theoretical approach relies essentially on the use of Leray-Schauder topological degree and involves some new technical estimates.

Bibliografia

M.A. Abdou, On the fractional order space-time nonlinear equations arising in plasma physics, Indian J. Phys. 93 (2019), 537–541.

M. Allen, L. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal. 221 (2016), 603–630.

M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the Riemann–Liouville fractional derivative and its applications, Fract. Calc. Appl. Anal. 17 (2014), no. 2, 483–498.

A. Ben-loghfyry, A. Hakim and A. Laghrib, A denoising model based on the fractional Beltrami regularization and its numerical solution, J. Appl. Math. Comput. 69 (2023), no. 2, 1431–1463.

A. Ben-loghfyry and A. Charkaoui, Regularized Perona and Malik model involving Caputo time-fractional derivative with application to image denoising, Chaos Solitons Fractals 175 (2023), p. 113925.

A. Ben-loghfyry and A. Hakim, Robust time-fractional diffusion filtering for noise removal, Math. Methods Appl. Sci. 45 (2022), 9719–9735.

A Ben-loghfyry and A. Hakim, A total variable-order variation model for image denoising, AIMS Math. 4 (2019), no. 5, 1320–1335.

H. Beyer and S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM Z. Angew. Math. Mech. 75 (1995), no. 8, 623–635.

A. Boukhouima, K. Hattaf, E.M. Lotfi, M. Mahrouf, D.F. Torres and N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solitons Fractals 140 (2020), 110224.

H. Brezis, Analyse Conctionnelle. Théorie et Applications, 1983.

A. Carpinteri, P. Cornetti and K.M. Kolwankar, Calculation of the tensile and flexural strength of disordered materials using fractional calculus, Chaos Solitons Fractals 21 (2004), no. 3, 623–632.

J.A. Carrillo, M. del Pino, A. Figalli, G. Mingione and J.L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion. Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Cetraro, Italy, 2016, pp. 205–278.

P. Clément, S.O. Londen and G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Differential Equations 196 (2004), no. 2, 418–447.

M. Di Paola, V. Fiore, F.P. Pinnola and A. Valenza, On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials, Mechanics of Materials 69 (2014), no. 1, 63–70.

L. Djilali and A. Rougirel, Galerkin method for time fractional diffusion equations, J. Elliptic Parabol. Equ. 4 (2018), no. 2, 349–368.

P. Drábek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations, Springer Science & Business Media, 2007.

L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, Proceedings of the American Mathematical Society, 1998.

Y. Fu and X. Zhang, Global existence, local existence and blow-up of mild solutions for abstract time-space fractional diffusion equations, Topol. Methods Nonlinear Anal. 60 (2022), no. 2, 415–440.

B. Ghanbari, H. Günerhan and H.M. Srivastava, An application of the Atangana–Baleanu fractional derivative in mathematical biology: A three-species predator-prey model, Chaos Solitons Fractals 138 (2020), 109910.

P. Igor, Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, Academic Press Inc., San Diego, 1999.

N. Kalton, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92, 1985.

N.A. Khan, A. Ara and A. Mahmood, Approximate solution of time-fractional chemical engineering equations: a comparative study, Internat.l J. Chemical Reactor Engineering 8 (2010), no. 1.

A. Kubica, K. Ryszewska and M. Yamamoto, Time-Fractional Differential Equations: A Theoretical Introduction, Springer, Singapore, 2020.

A. Kubica and M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal. 21 (2018), no. 2, 276–311.

V.V. Kulish and J.L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng. 124 (2002), no. 3, 803–806.

R.A. Leo, G. Sicuro and P. Tempesta, A foundational approach to the Lie theory for fractional order partial differential equations, Fract. Calc. Appl. Anal. 20 (2017), no. 1, 212–231.

Y. Liu, W. Rundell and M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem, Fract. Calc. Appl. Anal. 19 (2016), no. 4, 888–906.

L. Li and J.G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal. 50 (2018), no. 4, 3963–3995.

Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl. 351 (2009), no. 1, 218–223.

Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam 24 (1999), no. 2, 207–233.

F.C. Meral, T.J. Royston and R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 4, 939–945.

S. Müller, M. Kästner, J. Brummund and V. Ulbricht, A nonlinear fractional viscoelastic material model for polymers, Comput. Mat. Sci. 50 (2011), no. 10, 2938–2949.

S.K. Ntouyas, B. Ahmad, M. Alghanmi and A. Alsaedi, Generalized fractional differential equations and inclusions equipped with nonlocal generalized fractional integral boundary conditions, Topol. Methods Nonlinear Anal. 54 (2019), no. 2B, 1051–1073.

Z. Odibat and S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl. 58 (2009), no. 11–12, 2199–2208.

Y. Ouedjedi, Ph.D. Thesis of the University of Mascara.

Y. Ouedjedi, A. Rougirel and K. Benmeriem, Galerkin method for time fractional semilinear equations, Fract. Calc. Appl. Anal. 24 (2021), no. 3, 755–774.

J. Prüss, Evolutionary Integral Equations and Applications, vol. 87, Birkhäuser, 2013.

S. Saha Ray and S. Sahoo, Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics, Comput. Math. Math. Phys. 56 (2016), 1319–1335.

E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A 284 (2000), no1̇–4, 376–384.

T.T. Shieh and D.E. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Var. 11 (2018), no. 3, 289–307.

S. Solı́s and V. Vergara, (2022). A non-linear stable non-Gaussian process in fractional time. Topological Methods in Nonlinear Analysis. 59, (2022), 987–1028.

D.N. Tien, Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl. 397 (2013), no. 1, 334–348.

J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. 7 (2014), no. 4, 857–885.

F. Wang, M.N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah and Y.M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals 30 (2022), no. 2, 2240051.

Q. Wang, J. Ma, S. Yu and L. Tan, Noise detection and image denoising based on fractional calculus, Chaos Solitons Fractals 131 (2020), 109463.

M. Yamamoto, Fractional calculus and time-fractional differential equations: revisit and construction of a theory, Mathematics 10 (2022), no. 5, 698.

Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2024-09-25

Jak cytować

1.
CHARKAOUI, Abderrahim & BEN-LOGHFYRY, Anouar. Topological degree for some parabolic equations with Riemann-Liouville time-fractional derivatives. Topological Methods in Nonlinear Analysis [online]. 25 wrzesień 2024, T. 64, nr 2, s. 597–619. [udostępniono 4.2.2026]. DOI 10.12775/TMNA.2024.017.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 64, No 2 (December 2024)

Dział

Articles

Licencja

Prawa autorskie (c) 2024 Abderrahim Charkaoui, Anouar Ben-loghfyry

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa