Topologizing Sperner's lemma
DOI:
https://doi.org/10.12775/TMNA.2024.008Słowa kluczowe
dimension, labeling, KKM principle, simplicial complex, Sperner's lemmaAbstrakt
The aim of this paper is to extend Sperner's lemma for a new class of complexes, called $n$-Sperner. Next, we consider a topological version of Sperner's lemma, which leads to characterization of the covering dimension and KKM-principle. Finally, for an arbitrary topological space a new dimension is defined.Bibliografia
K.T. Atanasov, On Sperner’s lemma, Studia Sci. Math. Hungar. 32 (1996), 71–74.
R.B. Bapat, A constructive proof of a permutation-based generalization of Sperner’s lemma, Math. Program. 44 (1989), no. 1, 113–120.
R.B. Bapat, Sperner’s lemma with multiple labels, Modeling, Computation and Optimization (S.K. Neogy, A.K. Das, R.B. Bapat, eds.), World Scientific, 2009, pp. 257–261.
E.D. Bloch, Mod 2 degree and a generalized no retraction theorem, Math. Nachr. 279 (2006), 490–494.
J.A. De Loera, E. Peterson and F.E. Su, A polytopal generalization of Sperner’s lemma, J. Combin. Theory Ser. A 100 (2002), no. 1–26.
R. Engelking, Dimension Theory, North-Holland Pub. Co., Amsterdam, 1978.
V.V. Fedorchuk and J. Van Mill, Dimensionsgrad for locally connected Polish spaces, Fund. Math. 163 (2000), 77–82.
D. Gale, Equilibrium in a discrete exchange economy with money, Internat. J. Game Theory 13 (1984), 61–64.
R. Hochberg, C. Mcdiarmid and M. Saks, On the bandwidth of triangulated triangles, Discrete Math. 138 (1995), 261–265.
A. Idzik, W. Kulpa and P. Maćkowiak, Equivalent forms of the Brouwer fixed point theorem II, Topol. Methods Nonlinear Anal. 57, no. 1 (2021), 57–71.
B. Knaster, K. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132–137.
F. Meunier, Sperner labellings: a combinatorial approach, J. Combin. Theory Ser. A 113 (2006), 1462–1475.
O.R. Musin, Around Sperner’s lemma, preprint, arXiv:1405.7513.
O.R. Musin, Homotopy invariants of covers and KKM-type lemmas, Algebr. Geom. Topol. 16 (2016), no. 3, 1799–1812.
L. R. Rubin, R.M. Schori and J.J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102.
E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Sem. Univ. Hamburg 6 (1928), 265–272.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Przemysław Tkacz

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0