Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Semiclassical solutions for fractional logarithmic Schrödinger equations with potentials unbounded below
  • Strona domowa
  • /
  • Semiclassical solutions for fractional logarithmic Schrödinger equations with potentials unbounded below
  1. Strona domowa /
  2. Archiwum /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Semiclassical solutions for fractional logarithmic Schrödinger equations with potentials unbounded below

Autor

  • Xiaoming An
  • Xian Yang

DOI:

https://doi.org/10.12775/TMNA.2023.063

Słowa kluczowe

Fractional logarithmic Schrödinger, penalization, concentration, unbounded below

Abstrakt

In this paper, we consider the following fractional logarithmic Schrödinger equation \begin{equation*} \varepsilon^{2s}(-\Delta)^s u + V(x)u=u\log u^2\quad \text{in } \R^N, \end{equation*} where $\varepsilon> 0$, $N\ge 1$ and $V(x)\in C\big(\R^N,\R\big)$ is a potential which can be unbounded below at infinity. By considering a new penalization, we show that the problem has a nontrivial solution $u_{\varepsilon}$ concentrating at a local minimum of $V$ as $\varepsilon\to 0$.

Bibliografia

C.O. Alves and C. Ji, Existence and concentration of positive solutions for a logarithmic Schröodinger equation via penalization method, Calc. Var. Partial Differential Equations 59 (2020), 1–27.

C.O. Alves and C. Ji, Multiple positive solutions for a Schrödinger logarithmic equation, Discrete Contin. Dyn. Syst. 40 (2020), 2671–2685.

C.O. Alves and O. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in RN via penalization method, Calc. Var. Partial Differential Equations 55 (2016), 1–19.

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equation, Arch. Ration. Mech. Anal. 140 (1997), 285–300.

A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on Rn , Progr. Math., vol. 240, Birkhäuser, Basel, 2006.

X. An and S. Peng, Multi-peak semiclassical bound states for fractional Schrödinger equations with fast decaying potentials, Electron. Res. Arch. 30 (2022), 585–614.

X. An, S. Peng and C. Xie, Semi-classical solutions for fractional Schrödinger equations with potential vanishing at infinity, J. Math. Phys. 60 (2019), 021501.

X. An and X. Yang, Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations, J. Math. Phys. 64 (2023), 011506.

X. An and X. Yang, Multi-peak solutions for logarithmic Schrödinger equations with potentials unbounded below, Discrete Contin. Dyn. Syst. 43 (2023), 3940–3968.

A.H. Ardila, Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Anal. 155 (2017), 52–64.

N. Ba, Y. Deng and S. Peng, Multi-peak bound states for Schrödinger equations with compactly supported or unbounded potentials, Ann. Inst. H. Poincarè Anal. Non Linèaire 27 (2010), 1205–1226.

D. Bonheure, S. Cingolani and M. Nys, Nonlinear Schrödinger equation: concentration on circles driven by an external maganetic field, Calc. Var. Partial Differential Equations 55 (2016), 1–33.

D. Bonheure and J. Van Schaftingen, Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl. 189 (2010), 273–301.

J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials, J. Eur. Math. Soc. (JEMS) 8 (2006), 217–228.

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations 34 (2009), 1566–1591.

W. Chen, Y. Li and P. Ma, The fractional Laplacian, World Scientific Publishing, 2019, MR4274583

P. D’Avenia, E. Montefusco and M. Squassina, On the logarithmic Schrödinger equation, Commun. Contemp. Math. 16 (2014), 1350032.

P. D’Avenia, M. Squassina and M. Zenari, Fractional logarithmic Schrödinger equations, Math. Methods Appl. Sci. 38 (2015), 5207–5216.

J. Dávila, M. del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. Partial Differential Equations 8 (2015), 1165–1235.

J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations 256 (2014), 858–892.

M. del Pino and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

M. del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1997), 245–265.

M. del Pino and P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincarè Anal. Non Linèaire 15 (1998), 127–149.

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math. 60 (2007), 113–146.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

M.M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity 28 (2015), 1937–1961.

L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacians, Comm. Pure Appl. Math. 69 (2016), 1671–1726.

M. Gallo, Multiplicity and concentration results for local and fractional NLS equations with critical growth, Adv. Differential Equations 26 (2021), 397–424.

X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations 55 (2016), 1–39.

N. Ikoma, K. Tanaka, Z-Q. Wang and C. Zhang, Semi-classical states for logarithmic Schrödinger equations, Nonlinearity 34 (2021).

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), 298–305.

Q. Li, S. Peng and S. Wei, On fractional logarithmic Schrödinger equations, Adv. Nonlinear Stud. 22 (2022), 41–66.

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations 37 (2010), 1–27.

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133–154.

W. Shuai, Existence and multiplicity of solutions for logarithmic Schrödinger equations with potential, J. Math. Phys. 62 (2021), 051501.

M. Squassina and A. Szulkin, Multiple solutions to logarithmic Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations 54 (2015), 585–597.

W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162.

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincarè Anal. Non Linèaire 3 (1986), 77–109.

W.C. Troy, Uniqueness of Positive Ground State Solutions of the Logarithmic Schrödinger Equation, Arch. Ration. Mech. Anal. 222 (2016), 1581–1600.

Z-Q. Wang and C. Zhang, Convergence from power-law to logarithm-law in nonlinear scalar field equations, Arch. Ration. Mech. Anal. 231 (2019), 45–61.

C. Zhang and X. Zhang, Bound states for logarithmic Schrödinger equations with potentials unbounded below, Calc. Var. Partial Differential Equations 59 (2020), 1–31.

K.G. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences, Gravit. Cosmol. 16 (2010), 288–297.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2024-09-21

Jak cytować

1.
AN, Xiaoming & YANG, Xian. Semiclassical solutions for fractional logarithmic Schrödinger equations with potentials unbounded below. Topological Methods in Nonlinear Analysis [online]. 21 wrzesień 2024, T. 64, nr 2, s. 383–407. [udostępniono 6.7.2025]. DOI 10.12775/TMNA.2023.063.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 64, No 2 (December 2024)

Dział

Articles

Licencja

Prawa autorskie (c) 2024 Xiaoming An, Xian Yang

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa