Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Retracting a ball in ℓ_1 onto its simple spherical cap
  • Home
  • /
  • Retracting a ball in ℓ_1 onto its simple spherical cap
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Retracting a ball in ℓ_1 onto its simple spherical cap

Authors

  • Jumpot Intrakul https://orcid.org/0000-0002-9491-959X
  • Smith Yokpaisan Iampiboonvatana https://orcid.org/0000-0002-6206-9375

DOI:

https://doi.org/10.12775/TMNA.2024.005

Keywords

Lipschitzian, optimal retraction, sequence space, spherical cup

Abstract

In this article, a notion and classification of spherical caps in the sequence space $\ell_1$ are introduced, and the least Lipschitz constant of Lipschitz retractions from the unit ball onto a spherical cap is defined. In addition, an approximation of this value for the specific spherical cap, the simple spherical cap, is calculated. This approximation reveals a rough relation between these values, denoted by $\kappa(\alpha)$, and the answer of the optimal retraction problem for the space $\ell_1$, denoted by $k_0(\ell_1)$. To be precise, there exists $-1< \mu< 0$ such that $k_0(\ell_1)\leq\kappa(\alpha)\leq2+k_0(\ell_1)$ whenever $-1< \alpha< \mu$; here $\alpha$ is the level of spherical cap.

References

M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l1, Studia Math. 180 (2007), no. 1, 73–76.

M. Baronti, E. Casini and C. Franchetti, The retraction constant in some Banach spaces, J. Approx. Theory 120 (2003), 296–308.

K. Bolibok, Minimal displacement and retraction problem in the space l1 , Nonlinear Anal. Forum 3 (1998), 13–23.

K. Bolibok and M. Szczepanik, On properties of contractions and nonexpansive mappings on spherical cap in Hilbert spaces, Fixed Point Theory 18 (2017), no. 2, 471–480.

P. Chaoha, K. Goebel and I. Termwuttipong, Around Ulam’s question on retractions, Topol. Methods Nonlinear Anal. 40 (2012), no. 3, 215–224.

K. Goebel, Remarks on retracting balls onto spherical caps in c0 , c, l∞ spaces, Ann. Univ. Mariae Curie-Sklodowska Sect. A 74 (2020), no. 1, 45–55.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, London, 1990.

K. Goebel, G. Marino, L. Muglia and R. Volpe, The retraction constant and the minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735–744.

J. Intrakul and P. Chaoha, Retraction from a unit ball onto its spherical cup, Linear Nonlinear Anal. 2 (2016), no. 1, 17–28.

J. Intrakul, P. Chaoha and W. Wichiramala, Lipschitz retractions onto sphere vs spherical cup in a Hilbert space, Topol. Methods Nonlinear Anal. 52 (2018), no. 677–691.

L. Piasecki, Retracting ball onto sphere in BC0 (R), Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 307–313.

J.J. Schäffer and K. Sundaresan, Reflexivity and the girth of spheres, Math. Ann. 184 (1970), 163–168.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-19

How to Cite

1.
INTRAKUL, Jumpot and IAMPIBOONVATANA, Smith Yokpaisan. Retracting a ball in ℓ_1 onto its simple spherical cap. Topological Methods in Nonlinear Analysis. Online. 19 March 2024. Vol. 63, no. 1, pp. 115 - 129. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2024.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Jumpot Intrakul, Smith Yokpaisan Iampiboonvatana

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop