Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Orbital Lipschitzian mappings and semigroup actions on metric spaces
  • Home
  • /
  • Orbital Lipschitzian mappings and semigroup actions on metric spaces
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Orbital Lipschitzian mappings and semigroup actions on metric spaces

Authors

  • Daniel Souza https://orcid.org/0000-0002-8336-9254
  • Rafael Espínola https://orcid.org/0000-0001-7524-653X
  • Maria Japón https://orcid.org/0000-0001-6010-5187

DOI:

https://doi.org/10.12775/TMNA.2023.058

Keywords

Fixed points, actions of semigroups, metric spaces, uniform Lipschitzian mappings, Lifschitz constant, uniform normal structure, orbit-nonexpansive mappings, orbit Lipschitzian actions

Abstract

In this paper we study some results on common fixed points of families of mappings on metric spaces by imposing orbit Lipschitzian conditions on them. These orbit Lipschitzian conditions are weaker than asking the mappings to be Lipschitzian in the traditional way. We provide new results under the two classic approaches in the theory of fixed points for uniformly Lipschitzian mappings: the one under the normal structure property of the space (which can be regarded as the Cassini-Maluta's approach) and the one after the Lifschitz characteristic of the metric space (Lifschitz's approach). Although we focus on the case of semigroup of mappings, our results are new even when a mapping is considered by itself.

References

A. Amini-Harandi, M. Fakhar and H.R. Hajisharifi, Weak fixed point property for nonexpansive mappings with respect to orbits in Banach spaces, J. Fixed Point Theory Appl. 18 (2016), 601–607.

J.F. Berglund, H.D. Junghem and P. Milnes, Analysis on Semigroups: Function Spaces, Compactifications, Representations, Canadian Mathematical Society Series of Monographs and Advance Texts, John Wiley and Sons, Inc., 1989.

E. Casini and E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103–108.

S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), 762–772.

D.J. Downing and W.O. Ray, Uniformly Lipschitzian semigroup in Hilbert space, Canad. Math. Bull. 25 (1982), 210–214.

D. Downing and B. Turett, Some properties of the characteristic of convexity relating to fixed point theory, Pacific J. Math. 104 (1983), 343–350.

M.S. Drodskiĭ and D.P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 837–840. (Russian)

L.A. Dung and D.H. Tan, Fixed points of semigroups of Lipschitzian mappings, Acta Math. Vietnam. 28 (2003), 89–100.

R. Espı́nola, M. Japón and D. Souza, New examples of subsets of c with the FPP and stability of the FPP in hyperconvex spaces, J. Fixed Point Theory Appl. 23 (2021), no. 3, paper no. 45, 19 pp.

R. Espı́nola, M. Japón, and D. Souza, Fixed points and common fixed points for orbitnonexpansive mappings in metric spaces, Mediterr. J. Math. 20 (2023), 182.

R. Espı́nola Garcı́a and A. Khamsi Introduction to Hyperconvex Spaces. Handbook of Metric Fixed Point Theory, Chapter 13, Kluwer Academic Publishers, 2001.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.

K. Goebel and W.A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140.

M. Górnicki, Fixed points of Lipschitzian semigroups in Banach spaces, Studia Math. 126 (1997), 101–113.

Y.Y. Huang and C.C. Hong, Common fixed point theorems for semigroups on metric spaces, Internat. J. Math. and Math. Sci. 22 (1999), 377–386.

H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroup in Hilbert spaces, J. Math. Anal. Appl. 127 (1987), 206–210.

M.A. Khamsi and W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, John Wiley and Sons, 2001.

W.A. Kirk and B. Sims, Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.

E.A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Mat. Fak. 16 (1975), 23–28. (Russian)

T.C. Lim and H.K. Xu, Uniformly Lispchitzian mappings in metric spaces with uniform normal structure, Nonlinear Anal. 25 (1995), 1231–1235.

A. Naggy, Special Classes of Semigroups, Advances in Mathematics, Springer, New York, 2001.

A. Nicolae, Generalized asymptotic pointwise contractions and nonexpansive mappings involving orbits., Fixed Point Theory Appl. (2010), 458265.

K.K. Tan and H.K. Xu, Fixed point theorems for Lipschitzian semigroups in Banach spaces, Nonlinear Anal. 20 (1993), 395–404.

A. Wiśnicki, Hölder continuous retractions and amenable semigroups of uniformly Lipschitzian mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 43 (2014), 89–96.

A. Wiśnicki and J. Wośko, Uniformly Lipschitzian group actions on hyperconvex spaces, Proc. Amer. Math. Soc. 114 (2016), no. 9, 3813–3824.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
SOUZA, Daniel, ESPÍNOLA, Rafael and JAPÓN, Maria. Orbital Lipschitzian mappings and semigroup actions on metric spaces. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 245 - 262. [Accessed 10 December 2025]. DOI 10.12775/TMNA.2023.058.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Daniel Souza, Rafael Espínola, Maria Japón

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop