Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On solutions vanishing at infinity of infinite systems of quadratic Urysohn integral equations
  • Strona domowa
  • /
  • On solutions vanishing at infinity of infinite systems of quadratic Urysohn integral equations
  1. Strona domowa /
  2. Archiwum /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

On solutions vanishing at infinity of infinite systems of quadratic Urysohn integral equations

Autor

  • Józef Banaś https://orcid.org/0000-0002-2838-5569
  • Justyna Madej

DOI:

https://doi.org/10.12775/TMNA.2023.046

Słowa kluczowe

Space of continuous and bounded functions, sequence space, measure of noncompactness, Schauder fixed point theorem, infinite system of integral equations

Abstrakt

The paper is devoted to present a result on the existence of solutions of an infinite system of quadratic integral equations of the Urysohn type considered on the real half-axis. Our investigations are conducted in the Banach space consisting of bounded and continuous functions defined on the real half-axis with values in the space of real sequences converging to zero. That space is equipped with the standard supremum norm. The main tools used in our study is the technique of measures of noncompactness and the Schauder fixed point principle. We illustrate our result by a suitable example.

Bibliografia

E. Ablet, L. Cheng, Q. Cheng and W. Zhuang, Every Banach space admits a homogeneous measure of non-compactness not equivalent to the Hausdorff measure, Sci. China Math. 62 (2019), 147–156.

R.R. Akhmerov, M.I. Kamenskiı̆, A.S. Potapov, A.E. Rodkin a and B.N. Sadovskiı̆, Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., vol. 55, Birkhäuser, Basel, 1992.

J.M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl., vol. 99, Birkhäuser, Basel, 1997.

J. Banaś and A. Chlebowicz, On solutions of an infinite system of nonlinear integral equations on the real half-axis, Banach J. Math. Anal. 13 (2019), 944–968.

J. Banaś, A. Chlebowicz and W. Woś, On measures of noncompactness in the space of functions defined on the half-axis with values in a Banach space, J. Math. Anal. Appl. 489, (2020), 124187.

J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math., vol. 60, Marcel Dekker, New York, 1980.

J. Banaś and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New Delhi, 2014.

J. Banaś, R. Nalepa and B. Rzepka, The study of the solvability of infinite systems of integral equations via measures of noncompactness, Numer. Funct. Anal. Optim. 43, (2022), 961–986.

J. Banaś and L. Olszowy, On solutions of a quadratic Urysohn integral equation on an unbounded interval, Dyn. Syst. Appl. 17 (2008), 255–270.

J. Banaś and B. Rzepka, The technique of Volterra–Stieltjes integral equations in the application to infinite systems of nonlinear integral equations of fractional orders, Comput. Math. Appl. 64 (2012), 3108–3116.

J. Banaś and B. Rzepka, On solutions of infinite systems of integral equations of Hammerstein type, J. Nonlinear Convex Anal. 18 (2017), 261–278.

J. Banaś and W. Woś, Solvability of an infinite system of integral equations on the real half-axis, Adv. Nonlinear Anal. 10 (2021), 202–216.

C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.

K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

G.M. Fichtenholz, Differential and Integral Calculus, vol. II, PWN, Warsaw, 1980 (in Polish).

J. Garcia-Falset and K. Latrach, Nonlinear Functional Analysis and Applications, Series in Nonlinear Analysis and Applications, vol. 41, De Gruyter, 2023.

I.T. Gohberg, L.S. Goldenštein and A.S. Markus, Investigations of some properties of bounded linear operators with their q-norms, Učen. Zap. Kishinevsk. Univ. 29 (1957), 29–36.

L.S. Goldenštein and A.S. Markus, On the measure of noncompactness of bounded sets and of linear operators, Studies in Algebra and Math. Anal., Izdat. “Karta Moldovenjaske”, Kishinev, 1965, pp. 45–54.

T. Jalal and A.H. Jan, Measures of noncompactness in the Banach space BC(R+ × R+ , E) and its application to infinite system of integral equations in two variables, Filomat (2022) (to appear).

M.A. Krasnosel’skiı̆, P.P. Zabreı̆ko, E.I. Pustylnik and P.E. Sobolevskiı̆, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.

K. Kuratowski, Sur les espaces complets, Fundam. Math. 15 (1930), 301–309.

I.A. Malik and T. Jalal, Infinite system of integral equations in two variables of Hammerstein type in c0 and l1 spaces, Filomat 33 (2019), 3441–3455.

E. Malkowsky and V. Rakočević, Advanced Functional Analysis, CRC Press, Taylor and Francis Group, Boca Raton, 2019.

J. Mallet-Paret and R.D. Nussbaum, Inequivalent measures of noncompactness and the radius of the essential spectrum, Proc. Amer. Math. Soc. 139 (2011), 917–930.

H. Mehravaran and H. Amiri Kayvanloo, Solvability of infinite system of nonlinear convolution type integral equations in the tempered sequence space mβ (%, p), AsianEuropean J. of Mathematics 16 (2023), 2350004.

W. Pogorzelski, Integral Equations and Their Applications, Pergamon Press, Oxford, New York, Frankfurt, PWN Polish Scientific Publishers, Warsaw, 1966.

P.P. Zabreı̆ko, A.I. Koshelev, M.A. Krasnosel’skiı̆, S.G. Mikhlin, L.S. Rakovshchik and V.J. Stetsenko, Integral Equations, Noordhoff, Leyden, 1975.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2024-03-03

Jak cytować

1.
BANAŚ, Józef & MADEJ, Justyna. On solutions vanishing at infinity of infinite systems of quadratic Urysohn integral equations. Topological Methods in Nonlinear Analysis [online]. 3 marzec 2024, T. 63, nr 1, s. 53–77. [udostępniono 29.6.2025]. DOI 10.12775/TMNA.2023.046.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 63, No 1 (March 2024)

Dział

Articles

Licencja

Prawa autorskie (c) 2024 Józef Banaś, Justyna Madej

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa