Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

New fixed point results for nonlinear Feng-Liu contractions with applications
  • Strona domowa
  • /
  • New fixed point results for nonlinear Feng-Liu contractions with applications
  1. Strona domowa /
  2. Archiwum /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

New fixed point results for nonlinear Feng-Liu contractions with applications

Autor

  • Adrian Petruşel https://orcid.org/0000-0002-5629-5667
  • Gabriela Petruşel https://orcid.org/0000-0002-8405-1977
  • Jen-Chih Yao https://orcid.org/0000-0002-0855-4097

DOI:

https://doi.org/10.12775/TMNA.2023.030

Słowa kluczowe

Multi-valued operator, fixed point, strict fixed point, complete metric space, comparison function, stability properties, integral inclusion

Abstrakt

In this paper we will extend the concept of multi-valued Feng-Liu contraction, by imposing a nonlinear assumption on the operator. Then, fixed point, strict fixed point and stability theorems for the fixed point inclusion with multi-valued nonlinear Feng-Liu contractions are given. An application illustrates the main theoretical results.

Bibliografia

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Berlin, 2009.

D.C. Biles, M.P. Robinson and J.S. Spraker, Fixed point approaches to the solution of integral inclusions, Topol. Methods Nonlinear Anal. 25 (2005), 297–311.

C. Chifu, A. Petruşel and G. Petruşel, Fixed point results for non-self nonlinear graphic contractions in complete metric spaces with applications, J. Fixed Point Theory Appl. 22 (2020), paper no. 97, 16 pp.

H. Covitz and S.B. Nadler jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.

Lj.B. Ćirić, Fixed points for generalized multivalued contractions, Mat. Vesnik 9 (1972), no. 24, 265–272.

K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.

T. Dominguez Benavides, P. Lorenzo Ramirez, M. Rahimi and A. Sadeghi Hafshejani, Multivalued iterated contractions, Fixed Point Theory 21 (2020), 151–166.

Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006), 103–112.

K. Goebel, Metric environment of the topological fixed point theorems, Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 577-611.

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Berlin, 2006.

M. Hasanuzzaman and M. Imdad, A unified Feng–Liu type result in relational metric spaces with an application, J. Fixed Point Theory Appl. 25 (2023), 30, DOI:10.1007/s11784-022-01041-9.

A. Latif, T. Nazir and M. Abbas, Stability of fixed points in generalized metric spaces, J. Nonlinear Var. Anal. 2 (2018), 287–294.

T.-C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436–441.

A. Magdaş, Contributions to Fixed Point Theory for Cyclic Operators and Applications, Presa Univ. Clujeană, 2021.

C. Mihiţ, G. Moţ and A. Petruşel, Fixed point theory for multi-valued Feng–Liu–Subrahmanyan contractions, Axioms 11 (2022), no. 10, 563, DOI: 10.3390/axioms11100563.

G. Minak, O. Acar and I. Altun, Multivalued pseudo-Picard operators and fixed point results, J. Function Spaces Appl. 2013 (2013), article ID 827458, 7 pp.

S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.

T.P. Petru, A. Petruşel and J.-C. Yao, Ulam–Hyers stability for operatorial lusions via nonself operators, Taiwanese J. Math. 15 (2011), 2195–2212.

A. Petruşel, Multi-valued weakly Picard operators and applications, Sci. Math. Jpn. 59 (2004), 169–202.

A. Petruşel and G. Petruşel, Some variants of the contraction principle for multivalued operators, generalizations and applications, J. Nonlinear Convex Anal. 20 (2019), 2187–2203.

A. Petruşel and G. Petruşel, Fixed point results for multi-valued locally contractive operators, Appl. Set-Valued Anal. Optim. 2 (2020), 175–181.

A. Petruşel, I.A. Rus and J.-C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math. 11 (2007), 903–914.

A. Petruşel, I.A. Rus and M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for multivalued operators, J. Nonlinear Convex Anal. 15 (2014), 493–513.

A. Petruşel, G. Petruşel and J.-C. Yao, Multi-valued graph contraction principle with applications, Optimization 69 (2020), 1541–1556.

A. Petruşel, G. Petruşel and J.-C. Yao, On some stability properties for fixed point inclusions, J. Nonlinear Convex Anal. 22 (2021), no. 8, 1465–1474.

S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) (1972),no. 5, 26–42.

S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), 104–113.

S. Reich and A.J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math. Sci. Special Volume, Part III (2011), 393-401.

S. Reich and A.J. Zaslavski, Genericity in Nonlinear Analysis, Springer, New York, 2014.

I.A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Cluj Univ. Press ClujNapoca, 2008.

I.A. Rus, A. Petruşel and A. Sı̂ntămărian, Data dependence of the fixed points set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), 1947–1959.

L. Rybinski, On Carathéodory type selections, Fund. Math. 125 (1985), 187–193.

T.X. Wang, Fixed point theorems and fixed point stability for multi-valued mappings on metric spaces, Nanjing Daxue Xuebao Shuxue Bannian Kan 6 (1989), 16–23.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2024-03-03

Jak cytować

1.
PETRUŞEL, Adrian, PETRUŞEL, Gabriela & YAO, Jen-Chih. New fixed point results for nonlinear Feng-Liu contractions with applications. Topological Methods in Nonlinear Analysis [online]. 3 marzec 2024, T. 63, nr 1, s. 153–166. [udostępniono 29.6.2025]. DOI 10.12775/TMNA.2023.030.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 63, No 1 (March 2024)

Dział

Articles

Licencja

Prawa autorskie (c) 2024 Adrian Petruşel, Gabriela Petruşel, Jen-Chih Yao

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa