Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Mild solutions to a class of nonlinear second order evolution equations
  • Strona domowa
  • /
  • Mild solutions to a class of nonlinear second order evolution equations
  1. Strona domowa /
  2. Archiwum /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Mild solutions to a class of nonlinear second order evolution equations

Autor

  • Jésus Garcia-Falset

DOI:

https://doi.org/10.12775/TMNA.2023.021

Słowa kluczowe

Evolution equation, mild solution

Abstrakt

The purpose of this paper is to study the existence of mild solutions to a class of second order nonlinear evolution equations of the form \begin{equation*} \begin{cases} u''(t)+A(u'(t))+B(u(t))\ni f(t), &t\in(0,T),\\ u(0)=u_0, \quad u'(0)=g(u') \end{cases} \end{equation*} where $A\colon D(A)\subseteq X\rightarrow 2^{X}$ is an $m$-accretive operator on a Banach space $X,$ $B: X\rightarrow X$ is a lipschitz mapping, $g\colon C([0,T];X)\to X$ is a function and $f\in L^1(0,T,X)$. We obtain sufficient conditions for this problem to have at least a mild solution.

Bibliografia

W. Arendt, R. Chill, S. Fornaro and C. Poupaud, Lp -maximal regularity for nonautonomous evolution equations, J. Differential Equations 237 (2007), 1–26.

D. Ariza-Ruiz and J. Garcia-Falset, Periodic solutions to second order nonlinear differential equations in Banach spaces, Mediterr. J. Math. 19 (2022), no. 51, 1–17.

J.M. Ayerbe, T. Domı́ngue and G. López, Measures of Noncompactness in metric fixed point theory, Advances and Applications, vol. 99, Birkhäuser Verlag, Basilea, 1997.

J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc., New York, 1980.

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.

Ph. Bénilan, Équations d’évolution dans un espace de Banach quelconque et applications, Thèse de doctorat d’État, Orsay, 1972.

F.E. Browder, Nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 470–476.

T. Cardinali and S. Gentili, An existence theorem for a non-autonomous second order nonlocal multivalued problem, Stud. Univ. Babeş-Bolyai Math. 62 (2017), no. 1, 101–117.

I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.

G. Darbo, Punti uniti in transformazioni a codomio non compatto, Rend. Sem. Mat. Uni. Padova 24 (1955), 84–92.

K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial condition, J. Math. Anal. Appl. 179 (1993), 630–637.

J. Diestel and J.J. Uhl, Jr., Vector Measures, Mathematical Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.

R.E. Edwards, Functional Analysis, Holt, Rinehart and Winston, 1965.

H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Noth Holland, Amsterdam, 1985.

J. Garcı́a-Falset, Existence results and asymptotic behavior for nonlocal abstract Cauchy problems, J. Math. Anal. Appl. 338 (2008), 639–652.

J. Garcı́a-Falset and K. Latrach, Nonlinear Functional Analysis and Applications, De Gruyter Ser. Nonlinear Anal. Appl., vol. 41, 2023.

J. Garcı́a-Falset and S. Reich, Integral solutions to a class of nonlocal evolution equations, Commun. Contemp. Math. 12 (2010), no. 6, 1031–1054.

K. Goebel, Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002.

H.R. Henrı́quez, V. Poblete and J.C. Pozo, Mild solutions of nonautonomous second order problems with nonlocal conditions, J. Math. Anal. Appl. 412 (2014), 3333–3352.

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520.

V. Keyntuo and C. Lizama, Periodic solutions of second order differential equations in Banach spaces, Math. Z. 253 (2006), 489–514.

W. Kryszewski and J. Siemianowshki, The Bolzano mean-value theorem and partial differential equations, J. Math. Anal. Appl. 457 (2018), 1452–1477.

J.L. Lions, Une remarque sur les applications du théorème de Hille Yosida, J. Math. Soc. Japan 9 (1957), 62–70.

J. Liu and W. Yu, Two solutions to superlineal Hamilton systems with impulsive effects, Appl. Math. Lett. 102 (2020), 106162.

R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976.

Y. Naas, F. Zohra-Mezeghrani, Strict solution for a second order differential equation in Holder spaces, Internat. J. Anal. Appl. 17 (2019), no. 6, 980–993.

R. Ortega, E. Serra and M. Tarallo, Non-continuation of the periodic oscillations of forced pendulum in the presence of friction, Proc. Amer. Math. Soc. 128 (2000), 2659–2665.

W.V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Ration. Mech. Anal. 40 (1970–1971), 312–328.

S. Reich, A fixed point theorem, Atti Accad. Naz. Liencei 51 (1971), 26–28.

S. Reich, Fixeds points in locally convex spaces, Math. Z. 125 (1972), 17–31.

S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Functional Anal. 36 (1980), 147–168.

S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460–467.

S. Reich, Nonlinear evolution equations and nonlinear ergodic theorems, Nonlinear Anal. 1 (1977), 319–330.

B.N. Sadovskı̆, On a fixed point principle, Funkt. Anal. 4 (1967), no. 2, 74–76.

P.E. Sobolevskiı̆, On second order differential equations in Banach spaces, Dokl. Akad. Nauk. SSSR 146 (1962), 774–777. (Russian)

X. Tijun and L. Jin, Differential operators and C-wellposedness of complete second order abstract Cauchy problems, Pacific J. Math. 186 (1998), no. 1, 167–200.

I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surv. Pure Appl. Math., second edition, vol. 75, Longman, Harlow, 1995.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2024-03-03

Jak cytować

1.
GARCIA-FALSET, Jésus. Mild solutions to a class of nonlinear second order evolution equations. Topological Methods in Nonlinear Analysis [online]. 3 marzec 2024, T. 63, nr 1, s. 131–151. [udostępniono 16.2.2026]. DOI 10.12775/TMNA.2023.021.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 63, No 1 (March 2024)

Dział

Articles

Licencja

Prawa autorskie (c) 2024 Jésus Garcia-Falset

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa