Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple solutions of nonlinear Neumann inclusions
  • Strona domowa
  • /
  • Multiple solutions of nonlinear Neumann inclusions
  1. Strona domowa /
  2. Archiwum /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Multiple solutions of nonlinear Neumann inclusions

Autor

  • Filomena Cianciaruso https://orcid.org/0000-0002-3522-1765
  • Paolamaria Pietramala https://orcid.org/0000-0002-7435-9767

DOI:

https://doi.org/10.12775/TMNA.2023.022

Słowa kluczowe

Inclusions, fixed point index, cone, nonlinear Neumann boundary conditions

Abstrakt

We prove new results on the existence of multiple solutions for elliptic inclusions with nonlinear boundary conditions of Neumann type. Our approach is topological and relies on the fixed point index for multivalued map.

Bibliografia

R.P. Agarwal and D. O’Regan, A note on the existence of multiple fixed points for multivalued maps with applications, J. Differential Equations 160 (2000), 389–403.

J.P. Aubin and A. Cellina, Differential Inclusions, Springer–Verlag, 1984.

D. Bonheure, C. Grumiau and C. Troestler, Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, Nonlinear Anal. 147 (2016), 236–273.

D. Bonheure and E. Serra, Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl. 18 (2011), 217–235.

G. Bonanno and G. D’Aguı̀, On the Neumann problem for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl. 358 (2009), 223–228.

G. Bonanno and A. Sciammetta, Existence and multiplicity results to Neumann problems for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl. 390 (2012), 59–67.

T. Cardinali and N.S. Papageorgiou, Hammerstein integral inclusions in reflexive Banach spaces, Proc. Amer. Math. Soc., 127 (1999), 95–103.

F. Cianciaruso, G. Infante and P. Pietramala, Solutions of perturbed Hammerstein integral equations with applications, Nonlinear Anal. Real World Appl. 33 (2017), 317–347.

F. Cianciaruso, G. Infante and P. Pietramala, Multiple positive radial solutions for Neumann elliptic systems with gradient dependence, Math. Methods Appl. Sci. 41 (2018), no. 16, 6358–6367.

F. Cianciaruso and P. Pietramala, Semipositone nonlocal Neumann elliptic system depending on the gradient in exterior domains, J. Math. Anal. Appl. 494 (2021), 1–17.

F. Cianciaruso and P. Pietramala, Existence of multiple solutions for a wide class of differential inclusions, Math. Nachr. 296 (2023), no. 1, 152–163.

D.G. De Figueiredo and P. Ubilla, Superlinear systems of second-order ODE’s, Nonlinear Anal. 68 (2008), 1765–1773.

K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.

J.M. do Ó, J. Sánchez, S. Lorca and P. Ubilla, Positive solutions for a class of multiparameter ordinary elliptic systems, J. Math. Anal. Appl. 332 (2007), 1249–1266.

D.R. Dunninger and H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal. 42 (2000), no. 5, 803–811.

L. Erbe, R. Ma and C.C. Tisdell, On two point boundary value problems for second order differential inclusions, Dynam. Systems Appl. 15 (2006), 79–88.

R.C. Ferreira and C.S. Goodrich, On positive solutions to fractional difference inclusions, Analysis 35 (2015), 73–83.

P. M. Fitzpatrick and W.V. Petryshyn, Fixed point theorems and the fixed point index for multivalued mappings in cones, J. London Math. Soc. 12 (1975/76), 75–85.

B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

K. Glashoff and J. Sprekels, An application of Glicksberg’s theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal. 12 (1981), 477–486.

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and setvalued integral equations, J. Integral Equations 4 (1982), 95–112.

C.S. Goodrich, Positive solutions to differential inclusions with nonlocal, nonlinear boundary conditions, Appl. Math. Comput. 219 (2013), 11071–11081.

C.S. Goodrich, New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function, J. Differential Equations 264 (2018), 236–262.

C.S. Goodrich, Radially symmetric solutions of elliptic PDEs with uniformly negative weight, Ann. Mat. Pura Appl. 197 (2018), 1585–1611.

C.S. Goodrich, Coercive functionals and their relationship to multiplicity of solution to nonlocal boundary value problems, Topol. Methods Nonlinear Anal. 54 (2019), 409–426.

C. S. Goodrich, A topological approach to nonlocal elliptic partial differential equations on an annulus, Math. Nachr. 294 (2021), no. 2, 286–309.

J.R. Graef, J. Henderson and A. Ouahab, Differential inclusions with nonlocal conditions: existence results and topological properties of solution sets, Topol. Methods Nonlinear Anal. 37 (2011), 117–145.

D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988.

P. Gurevich and W. Jager, Parabolic problems with the Preisach hysteresis operator in boundary conditions, J. Differential Equations 247 (2009), 2966–3010.

D.D. Hai and R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differential Equations 266 (2019), no. 4, 2232–2243.

S. Hong and J. Chen, Multiplicity of positive radial solutions for an elliptic inclusion system on an annulus, J. Comput. Appl. Math. 221 (2008), no. 1, 66–75.

S. Hong and L. Wang, Existence of solutions for integral inclusions, J. Math. Anal. Appl. 317 (2006), 429–441.

G. Infante, Nonzero positive solutions of a multi-parameter elliptic system with functional BCS, Topol. Methods Nonlinear Anal. 52 (2018), 665–675.

G. Infante, Nonzero positive solutions of nonlocal elliptic systems with functional BCs, J. Elliptic Parabol. Equ. 5 (2019), 493–505.

G. Infante, P. Pietramala and F.A.F. Tojo, Non-trivial solutions of local and nonlocal Neumann boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 337–369.

A. Lasota and Z. Opial, An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781–786.

R. Ma, H. Gao and Y. Lu, Radial positive solutions of nonlinear elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl. 434 (2016), no. 2, 1240–1252.

A.R. Miciano and R. Shivaji, Multiple positive solutions for a class of semipositone Neumann two-point boundary value problems, J. Math. Anal. Appl. 178 (1993), 102–115.

D. O’Regan and M. Zima, Leggett–Williams theorems for coincidences of multivalued operators, Nonlinear Anal. 68 (2008), 2879–2888.

P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel’skiı̆ fixed point theorem, J. Differential Equations 190 (2003), 643–662.

L. Zhilong, Existence of positive solutions of superlinear second-order Neumann boundary value problem, Nonlinear Anal. 72 (2010), 3216–3221.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-12-31

Jak cytować

1.
CIANCIARUSO, Filomena & PIETRAMALA, Paolamaria. Multiple solutions of nonlinear Neumann inclusions. Topological Methods in Nonlinear Analysis [online]. 31 grudzień 2023, T. 62, nr 2, s. 727–744. [udostępniono 28.6.2025]. DOI 10.12775/TMNA.2023.022.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 62, No 2 (December 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Filomena Cianciaruso, Paolamaria Pietramala

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa