Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Balanced capacities
  • Home
  • /
  • Balanced capacities
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Balanced capacities

Authors

  • Taras Radul https://orcid.org/0000-0002-0750-8283

DOI:

https://doi.org/10.12775/TMNA.2023.014

Keywords

Balanced capacity, core of a cooperative game, fuzzy integral

Abstract

We consider capacity (fuzzy measure, non-additive probability) on a compactum as a monotone cooperative normed game. Then it is natural to consider probability measures as elements of core of such game. We prove a topological version of the Bondareva-Shapley theorem that non-emptiness of the core is equivalent to balancedness of the capacity. We investigate categorical properties of balanced capacities and give characterizations of some fuzzy integrals of balanced capacities.

References

D. Bartl and M. Pinter, The core and balancedness of TU games with infinitely many players, preprint, 2017.

O.N. Bondareva, Some applications of linear programming methods to the theory of cooperative games, Problemy Kybernetiki 10 (1963), 119–139.

W. Briec and Ch. Horvath, Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and B-convexity, J. Math. Anal. Appl. 341 (2008), 188–199.

G. Choquet, Theory of capacity, Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 13–295.

L.M. de Campos, M.T. Lamata and S. Moral, A unified approach to define fuzzy integrals, Fuzzy Sets and Systems 39 (1991), 75–90.

C. Dellacherie, Quelques commentaires sur les prolongements de capacities, Seminaire Probabilities V, Strasbourg, Lecture Notes in Math., vol. 191, Springer–Verlag, Berlin, 1970.

D. Denneberg, Non-Additive Measure and Integral, Kluwer, Dordrecht, 1994.

J. Eichberger and D. Kelsey, Non-additive beliefs and strategic equilibria, Games Econ. Behav. 30 (2000), 183–215.

S. Eilenberg and J. Moore, Adjoint functors and triples, Ill. J. Math. 9 (1965), 381–389.

R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann Verlag, 1995.

V.V. Fedorchuk, Probability measures in topology, Uspekhi Mat. Nauk 46 (1991), 41–80, in Russian.

I. Gilboa, Expected utility with purely subjective non-additive probabilities, J. Math. Econom. 16 (1987), 65–88.

D.B. Gillies, Solutions to general non-zero-sum games, Contributions to the Theory of Games, vol. IV, Annals of Mathematics Studies, no4̇0, Princeton University Press, 1959, pp. 47–85.

I.L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Am. Math. Soc. 5 (1952), 170–174.

M. Grabisch, Set Functions, Games and Capacities in Decision Making, Springer, 2016.

Y. Kannai, Countably additive measures in cores of games, J. Math. Analy. Appl. 27 (1969), 227–240.

Y. Kannai, The core and balancedness, Handbook of Game Theory with Economic Applications, vol. 1, North-Holland, pp. 355–395.

E.P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.

R. Kozhan and M.Zarichnyi, Nash equilibria for games in capacities, Econ. Theory 35 (2008), 321–331.

O.R. Nykyforchyn and M.M. Zarichnyi, Capacity functor in the category of compacta, Mat. Sb. 199 (2008), 3–26.

E. Pap, Null-Additive Set Functions, Kluwer, Dordrecht, Ister Science, Bratislava, 1995.

E. Pap, On non-additive set functions, Atti. Sem. Mat. Fis. Univ. Modena 39 (1991), 345–360.

M. Pinter, Algebraic duality theorems for infinite LP problems, J. Math. Anal. Appl. 434 (2011), 688–693.

T. Radul, Convexities generated by L-monads, Applied Categ. Structures 19 (2011), 729–739.

T. Radul, Nash equilibrium for binary convexities, Topol. Methods Nonlinear Anal. 48 (2016), 555–564.

T. Radul, Equilibrium under uncertainty with Sugeno payoff, Fuzzy Sets and Sytems 349 (2018), 64–70.

T. Radul, Equilibrium under uncertainty with fuzzy payoff, Topol. Methods Nonlinear Anal. 59 (2022), 1029–1045.

T. Radul, Games in possibility capacities with payoff expressed by fuzzy integral, Fuzzy Sets and Systems 434 (2022), 185–197.

T. Radul, Some remarks on characterization of t-normed integrals on compacta, Fuzzy Sets and Sytems 467 (2023), 108490.

D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986), 255–261.

D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57 (1989), 571–587.

D. Schmeidler, On balanced games with infinitely many players, Mimeographed, RM-28 Department of Mathematics, The Hebrew University, Jerusalem.

L.S. Shapley, On Balanced Sets and Cores, Naval Res. Logist. Quarterly 14 (1967), 453–460.

L.S. Shapley, Cores of convex games, Internat. J. Game Theory 1 (1971), 12–26.

F. Suarez, Familias de integrales difusas y medidas de entropia relacionadas, Thesis, Universidad de Oviedo, Oviedo (1983).

M. Sugeno, Fuzzy measures and fuzzy integrals, A survey, Fuzzy Automata and Decision Processes (M.M. Gupta, G.N. Saridis, B.R. Gaines, eds.), North-Holland, Amsterdam, 1977, pp. 89–102.

S. Weber, Decomposable measures and integrals for archimedean t-conorms, J. Math. Anal. Appl. 101 (1984), 114–138.

S. Weber, Two integrals and some modified versions – Critical remarks, Fuzzy Sets and Systems 20 (1986), 97–105.

L. Zhou, Integral representation of continuous comonotonically additive functionals, Trans. Amer. Math. Soc. 350 (1998), 1811–1822.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-12-31

How to Cite

1.
RADUL, Taras. Balanced capacities. Topological Methods in Nonlinear Analysis. Online. 31 December 2023. Vol. 62, no. 2, pp. 553 - 567. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2023.014.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Taras Radul

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop