Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the existence of periodic solutions for Liénard type $\phi$-Laplacian equation
  • Strona domowa
  • /
  • On the existence of periodic solutions for Liénard type $\phi$-Laplacian equation
  1. Strona domowa /
  2. Archiwum /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

On the existence of periodic solutions for Liénard type $\phi$-Laplacian equation

Autor

  • Congmin Yang
  • Zaihong Wang

DOI:

https://doi.org/10.12775/TMNA.2022.067

Słowa kluczowe

$\phi$-Laplacian equation, periodic solution, continuation lemma

Abstrakt

In this paper, we study the existence of periodic solutions for a Liénard type $\phi$-Laplacian equation $$ (\phi(x'))'+f(x)x'+g(x)=p(t). $$ We prove a continuation lemma and use it to prove the existence of periodic solutions for above equation when $g$ or $G$ (the primitive of $g$) satisfies some one-sided or bilateral growth conditions and $F$ (the primitive of $f$) satisfies sublinear condition.

Bibliografia

R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford, 1975.

A. Boscaggin and M. Garrione, Sign-changing subharmonic solutions to unforced equations with singular φ-Laplacian, Differential and Difference Equations with Applications, Springer Proc. Math. Stat. 47 (2013), 321–329.

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian, J. Differential Equations 243 (2007), 536–557.

C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and φ-Laplacian, Nonlinear Differ. Equations Appl. 25 (2008), 159–168.

C. Bereanu and J. Mawhin, Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ, Nonlinear Anal. 68 (2008), 1668–1681.

L.E. Bobisud, Steady-state turbulent flow with reaction, Rocky Mountain J. Math. 21 (1991), 993–1007.

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, J. London Math. Soc. 68 (2003), 119–132.

M. Del Pino, R. Manásevich and A. Murúa, Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE, Nonlinear Anal. 18 (1992), 79–92.

J.R. Esteban and J.L. Vazquez, On the equation of turbulent filtration in one-dimensional porous media, Nonlinear Anal. 10 (1986), 1303–1325.

A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane, J. Differential Equations 252 (2012), 1369–1391.

M.A. Krasnosel’skiı̆, The Operator of Translation Along the Trajectories of Differential Equations, Amer. Math. Soc., Providence, R.I., 1968.

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations 145 (1998), 367–393.

J. Mawhin and J.R. Ward, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. 41 (1983), 337–351.

H. Meng and F. Long, Periodic solutions for a Liénard type p-Laplacian differential equation, J. Comput. Appl. Math. 224 (2009), 696–701.

P. Omari, G. Villari and F. Zanolin, Periodic solutions of the Liénard equation with one-sided growth restrictions, J. Differential Equations 67 (1987), 278–293.

M. Pei and L. Wang, Existence of periodic solutions for p-Laplacian equation without growth restrictions, Zeitschrift für Angewandte Mathematik und Physik 72 (2021), paper no. 53, 8 pp.

P.J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with φ-Laplacian, Commun. Contemp. Math. 13 (2011), 283–292.

Z. Wang, Time maps and the existence of periodic solutions of the second order quasilinear differential equations, Chinese J. Contemp. Math. 22 (2001), 245–258.

Z. Wang, Existence and multiplicity of periodic solutions of the second order Liénard equation with Lipschtzian condition, Nonlinear Anal. 49 (2002), 1049–1064.

F. Zanolin, Continuation theorems for the periodic problem via the translation operator, Rend. Sem. Mat. Univ. Pol. Torino 54 (1996), 1–23.

F. Zhang and Y. Li, Existence and uniqueness of periodic solutions for a kind of duffing type p-Laplacian equation, Nonlinear Anal. 9 (2008), 985–989.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-09-23

Jak cytować

1.
YANG, Congmin & WANG, Zaihong. On the existence of periodic solutions for Liénard type $\phi$-Laplacian equation. Topological Methods in Nonlinear Analysis [online]. 23 wrzesień 2023, T. 62, nr 1, s. 219–237. [udostępniono 29.6.2025]. DOI 10.12775/TMNA.2022.067.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 62, No 1 (September 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Congmin Yang, Zaihong Wang

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa