Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Local Morrey estimate in Musielak-Orlicz-Sobolev space
  • Strona domowa
  • /
  • Local Morrey estimate in Musielak-Orlicz-Sobolev space
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Local Morrey estimate in Musielak-Orlicz-Sobolev space

Autor

  • Duchao Liu
  • Peihao Zhao

DOI:

https://doi.org/10.12775/TMNA.2023.001

Słowa kluczowe

Musielak-Sobolev space, Morrey estimate, Hölder continuity

Abstrakt

Under appropriate assumptions on the $N(\Omega)$-fucntion, locally uniform Morrey estimate is presented in the Musielak-Orlicz-Sobolev space. The assumptions include a new increasing condition on the $x$-derivative of the Young complementary function of the $N(\Omega)$-fucntion. The conclusion applies to several important nonlinear examples frequently appeared in mathematical literature.

Bibliografia

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121–140.

R. Adams, Sobolev Spaces, New York, Acad. Press, 1975.

Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi, Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces, J. Func. Anal. 275 (2018), no. 9, 2538–2571.

J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1976/1977), no. 4, 337–403.

K. Chelmiński and S. Owczarek, Renormalised solutions in thermo-visco-plasticity for a Norton–Hoff type model, Part II: the limit case, Nonlinear Anal. 31 (31) (2016), 643–660.

I. Chlebicka, P. Gwiazda, A.Ś. Gwiazda and A.W. Kamińska, Partial Differential Equations in Anisotropic Modular Orlicz Spaces, Springer Nature Switzerland AG, Springer, 2021.

M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273.

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443–496.

T.K. Donaldson and N.S. Trudinger, Orlicz–Sobolev spaces and imbedding theorems, J. Func. Anal. 8 (1971), 52–75.

X. Fan, Differential equations of divergence form in Musielak–Sobolev spaces and subsupersolution method, J. Math. Anal. Appl. 386 (2012), 593–604.

X. Fan, An imbedding theorem for Musielak–Sobolev spaces, Nonlinear Anal. 75 (2012), 1959–1971.

X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.

X. Fan and D. Zhao, The quasi-minimizer of integral functionals with m(x)-growth conditions, Nonlinear Anal. 39 (2000), 807–816.

J.P. Gossez, Some approximation properties in Orlicz–Sobolev spaces, Studia Math. 74 (1982), no. 1, 17–24.

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci. 18 (2008), no. 7, 1073–1092.

P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal. 32 (2008), 103–113.

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci. 33 (2010), no. 2, 125–137.

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Generalized Stokes system in Orlicz spaces, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2125–2146.

P. Harjulehto, P. Hästö and R. Klén, Generalized Orlicz spaces and related PDE, Nonlinear Anal. 143 (2016), 155–173.

F.Z. Klawe, Thermo-visco-elasticity for models with growth conditions in Orlicz spaces, Topol. Methods Nonlinear Anal. 47 (2016), no. 2, 457–497.

D. Liu and J. Yao, A class of De Giorgi type and local boundedness, Topol. Methods Nonlinear Anal. 51 (2018), 345–370.

D. Liu and P. Zhao, Solutions for a quasilinear elliptic equation in Musielak–Sobolev spaces, Nonlinear Anal. 26 (2015), 315–329.

P. Marcellini, Regularity of minimizers of integrals of the caculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267–284.

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1–30.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer–Verlag, Berlin, 1983.

A. Świerczewska-Gwiazda, Anisotropic parabolic problems with slowly or rapidly growing terms, Colloq. Math. 134 (2014), no. 1, 113–130.

A. Świerczewska-Gwiazda, Nonlinear parabolic problems in Musielak–Orlicz spaces, Nonlinear Anal. 134 (2014), no. 98, 48–65.

B. Wang, D. Liu and P. Zhao, Hölder continuity for nonlinear elliptic problem in Musielak–Orlicz–Sobolev space, J. Differential Equations 266 (2019), 4835–4863.

A. Wróblewska, Steady flow of non-Newtonian fluids–monotonicity methods in generalized Orlicz spaces, Nonlinear Anal. 72(11) (2010), 4136–4147.

A. Wróblewska, Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2565–2592.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-06-23

Jak cytować

1.
LIU, Duchao & ZHAO, Peihao. Local Morrey estimate in Musielak-Orlicz-Sobolev space. Topological Methods in Nonlinear Analysis [online]. 23 czerwiec 2023, T. 61, nr 2, s. 637–650. [udostępniono 29.6.2025]. DOI 10.12775/TMNA.2023.001.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 2 (June 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Duchao Liu, Peihao Zhao

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa