Parametrized topological complexity of sphere bundles
DOI:
https://doi.org/10.12775/TMNA.2022.049Słowa kluczowe
Robot motion planning, topological complexity, motion planning algorithm, characteristic classesAbstrakt
Parametrized motion planning algorithms \cite{CFW} have high degree of flexibility and universality, they can work under a variety of external conditions, which are viewed as parameters and form part of the input of the algorithm. In this paper we analyse the parameterized motion planning problem in the case of sphere bundles. Our main results provide upper and lower bounds for the parametrized topological complexity; the upper bounds typically involve sectional categories of the associated fibrations and the lower bounds are given in terms of characteristic classes and their properties. We explicitly compute the parametrized topological complexity in many examples and show that it may assume arbitrarily large values.Bibliografia
D.C. Cohen, M. Farber and S. Weinberger, Topology of parametrized motion planning algorithms, SIAM J. Appl. Algebra Geom. 5 (2021), 229–249.
D.C. Cohen, M. Farber and S. Weinberger, Parametrized topological complexity of collision-free motion planning in the plane, Ann. Math. Artif. Intell. 90 (2022), no. 10, 999–1015.
A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255.
E. Fadell and S. Husseini, Category weight and Steenrod operations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1–2, 151–161.
M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.
M. Farber, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, EMS, 2008.
J.M. Garcı́a-Calcines, A note on covers defining relative and sectional categories, Topology Appl. 265 (2019), 106810.
I.M. James, Reduced product spaces, Ann. Math. 62 (1955), 170–197.
S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
J.W. Milnor and J.D. Stasheff, Characteristic Classes, Princeton University Press, 1974.
A.S. Schwarz, The genus of a fibre space, Trudy Moscow Math Society 11 (1962), 99–126.
E. Spanier, Algebraic Topology, 1966.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2023 Michael Farber, Shmuel Weinberger Weinberger

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0