Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Envy-free division via configuration spaces
  • Strona domowa
  • /
  • Envy-free division via configuration spaces
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Envy-free division via configuration spaces

Autor

  • Gaiane Panina
  • Rade T. Živaljević https://orcid.org/0000-0001-9801-8839

DOI:

https://doi.org/10.12775/TMNA.2022.036

Słowa kluczowe

Envy-free division, configuration space/test map scheme

Abstrakt

The classical approach to envy-free division and equilibrium problems arising in mathematical economics typically relies on Knaster-Kuratowski-Mazurkiewicz theorem, Sperner's lemma or some extension involving mapping degree. We propose a different and relatively novel approach where the emphasis is on configuration spaces and equivariant topology, originally developed for applications in discrete and computational geometry (Tverberg type problems, necklace splitting problem, etc.). We illustrate the method by proving several counterparts and extensions of the classical envy-free division theorem of David Gale, where the emphasis is on preferences allowing the players to choose degenerate pieces of the cake.

Bibliografia

N. Alon, Splitting necklaces, Adv. Math. 63 (1987), 247–253.

S. Avvakumov and R. Karasev, Envy-free division using mapping degree, Mathematika 67 (2021), no. 1, 36–53.

S. Avvakumov, R. Karasev, Equipartition of a segment, arXiv: 2009.09862.

P.V.M. Blagojević, B. Matschke and G.M. Ziegler, Optimal bounds for the colored Tverberg problem, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 739–754.

A. Dold, Simple proofs of some Borsuk–Ulam results, Contemp. Math. 19 (1983), 65–69.

D. Gale, Equilibrium in a discrete exchange economy with money, Internat. J. Game Theory 13 (1984), no. 1, 61–64.

F. Frick, K. Houston-Edwards and F. Meunier, Achieving rental harmony with a secretive roommate, Amer. Math. Monthly 126 (2019), no. 1.

M.D. Hirsch, M. Magill and A. Mas-Colell, A geometric approach to a class of equilibrium existence theorems, J. Math. Econom. 19 (1990), 95–106.

S.Y. Husseini, J.-M. Lasry and M.J.P. Magill, Existence of equilibrium with incomplete markets, J. Math. Econom. 19 (1990), 39–67.

D. Jojić, G. Panina and R.T. Živaljević, Splitting necklaces, with constraints, SIAM J. Discrete Math. 35 (2021), no. 2, 1268–1286.

D. Jojić, G. Panina and R.T. Živaljević, Optimal colored Tverberg theorems for prime powers, Homology Homotopy Appl. 24 (2022), no. 2, 401–424.

J. Matoušek, Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer–Verlag, Heidelberg, 2003 (corrected 2nd printing 2008).

F. Meunier and S. Zerbib, Envy-free cake division without assuming the players prefer nonempty pieces, Israel J. Math. 234 (2019), 907–925.

E. Segal-Halevi, Fairly dividing a cake after some parts were burnt in the oven, Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2018), 2018, 1276–1284.

P. Soberón, Fair distributions for more participants than allocations, Proc. Amer. Math. Soc. Ser. B 9 (2022), 404–414.

W. Stromquist, How to cut a cake fairly, Amer. Math. Monthly 87 (1980), no. 8, 640–644.

A.Y. Volovikov, On a topological generalization of the Tverberg theorem, Math. Notes 59 (1996), 324–32.

S. Vrećica and R. Živaljević, Chessboard complexes indomitable, J. Combin. Theory Ser. A 118 (2011), 2157–2166.

D.R. Woodall, Dividing a cake fairly, J. Math. Anal. Appl. 78 (1980), no. 1, 233–247.

R.T. Živaljević, Topological methods in discrete geometry, Handbook of Discrete and Computational Geometry (third edition), (J.E. Goodman, J. O’Rourke, and C. D. Tóth, eds) CRC Press LLC, 2017, Chapter 21, 551–580.

R.T. Živaljević and S.T. Vrećica, The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory Ser. A 61 (1992), 309–318.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-02-26

Jak cytować

1.
PANINA, Gaiane & ŽIVALJEVIĆ, Rade T. Envy-free division via configuration spaces. Topological Methods in Nonlinear Analysis [online]. 26 luty 2023, T. 61, nr 1, s. 83–106. [udostępniono 8.7.2025]. DOI 10.12775/TMNA.2022.036.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 1 (March 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Gaiane Panina, Rade T. Živaljević

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa