Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The fixed point set of the inverse involution on a Lie group
  • Strona domowa
  • /
  • The fixed point set of the inverse involution on a Lie group
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

The fixed point set of the inverse involution on a Lie group

Autor

  • Haibao Duan
  • Shali Liu

DOI:

https://doi.org/10.12775/TMNA.2022.012

Słowa kluczowe

Lie groups, symmetric spaces, fixed point theory

Abstrakt

The inverse involution on a Lie group $G$ is the periodic $2$ transformation $\gamma $ that sends each element $g\in G$ to its inverse $g^{-1}$. The variety of the fixed point set $\Fix(\gamma )$ is of importance for the relevances with Morse function on the Lie group $G$, and the $G$-representations of the cyclic group $\mathbb{Z}_{2}$. In this paper we develop an approach to calculate the diffeomorphism types of the fixed point sets $\Fix(\gamma)$ for the simple Lie groups.

Bibliografia

N. Bourbaki, Elements de mathematique, Chapters I–VIII, Groupes et algebres de Lie, Hermann, Paris, 1960–1975.

T. Bröker and T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Mathematics, vol. 98, Springer–Verlag, New York, 1985.

A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221.

J. Cheeger, Pinching theorems for a certain class of Riemannian manifolds, Amer. J. Math. 91 (1969), 807–834.

P.J. Crittenden, Minimum and conjugate points in symmetric spaces, Canad. J. Math. 14 (1962), 320–328.

H. Duan, The Lefschetz number of self-maps of Lie groups, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1284–1286.

H. Duan, A unified Morse theory of compact Lie groups, in preparation.

H. Duan and S. Liu, The isomorphism type of the centralizer of an element in a Lie group, J. Algebra 376 (2013), 25–45.

Dž. Djoković, On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups, Proc. Amer. Math. Soc. 80 (1980), no. 1, 181–184.

T. Frankel, Critical submanifolds of the classical groups and Steifel manifolds, Conference: Differential and Combinatorial Topology (in honour of M. Morse), Princeton Univ. Press, 1965, pp. 37–53.

T. Friedmann and R.P. Stanley, Counting conjugacy classes of elements of finite order in Lie groups, Europ. J. Combinatorics 36 (2014), 86–96.

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc., New York, London, 1978.

E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer–Verlag, New York, Berlin, 1972.

S. Ramanujam, Morse theory of certain symmetric spaces, J. Differential Geom. 3 (1969), 213–229.

I. Yokota, Realizations of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, part I, G = G2 , F4 and E6 , Tsukuba J. Math. 14 (1990), 185–223.

I. Yokota, Realizations of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, part II, G = E7 , Tsukuba J. Math. 14 (1990), 379–404.

I. Yokota, Realizations of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, part III, G = E8 , Tsukuba J. Math 15 (1991), 301–314.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-02-26

Jak cytować

1.
DUAN, Haibao & LIU, Shali. The fixed point set of the inverse involution on a Lie group. Topological Methods in Nonlinear Analysis [online]. 26 luty 2023, T. 61, nr 1, s. 21–36. [udostępniono 19.12.2025]. DOI 10.12775/TMNA.2022.012.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 1 (March 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Haibao Duan, Shali Liu

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa