Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of solutions for the Brezis-Nirenberg problem
  • Strona domowa
  • /
  • Existence of solutions for the Brezis-Nirenberg problem
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Existence of solutions for the Brezis-Nirenberg problem

Autor

  • Francisco Odair de Paiva
  • Olímpio H. Miyagaki https://orcid.org/0000-0002-5608-3760
  • Adilson E. Presoto

DOI:

https://doi.org/10.12775/TMNA.2022.029

Słowa kluczowe

Critical growth, resonance, low dimension

Abstrakt

We are concerned with of existence of solutions to the semilinear elliptic problem $$ \begin{cases} - \Delta u=\lambda_{k}u+u^3 &\text{in } \Omega, \\ u= 0 &\text{on }\partial \Omega, \end{cases} $$% in a bounded domain $\Omega \subset \mathbb{R}^{4}$. Here $\lambda_k$ is an eigenvalue of the $-\Delta$ in $H_0^1(\Omega)$. We prove that this problem has a nontrivial solution.

Bibliografia

G. Arioli, F. Gazzola, H.-C. Grunau and E. Sassone, The second bifurcation branch for radial solutions of the Brezis–Nirenberg problem in dimension four, NoDEA Nonlinear Differ. Equ. Appl. 15 (2008), 69–90.

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev expoents, Comm. Pure Appl. Math. 36 (1983), 437–477.

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 463–470.

M. Clapp and T. Weth, Multiple solutions for the Brezis–Nirenberg problem, Adv. Differential Equations 10 (2005), 1257–1280.

F.O. de Paiva and W. Rosa, Critical Neumann problems with asymmetric nonlinearity, Topol. Methods Nonlinear Anal. 56 (2020), 117–127.

G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations 7 (2002), 463–480.

D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 205–213.

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differential Equations 2 (1997), 555–572.

K. Perera and M. Schechter, Critical groups in saddle point theorems without a finite dimensional closed loop, Math. Nachr. 243 (2002), 156–164.

E.A. Silva, Linking theorems and applications to semilinear elliptic problems at resoance, Nonlinear Anal. 16 (1991), 455–477.

M. Struwe, Variational Methods, Applications to Nonlinear PDE and Hamiltonial Systems, Springer–Verlag, Berlin, 1996.

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Boston, MA, 1996.

D. Zhang, On multiple solutions of ∆u + λu + |u|4/(N −2) = 0, Nonlinear Anal. 13 (1989), 353–372.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-01-25

Jak cytować

1.
DE PAIVA, Francisco Odair, MIYAGAKI, Olímpio H. & PRESOTO, Adilson E. Existence of solutions for the Brezis-Nirenberg problem. Topological Methods in Nonlinear Analysis [online]. 25 styczeń 2023, T. 61, nr 2, s. 651–659. [udostępniono 5.7.2025]. DOI 10.12775/TMNA.2022.029.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 2 (June 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Francisco Odair de Paiva, Olímpio H. Miyagaki, Adilson E. Presoto

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa