Array
DOI:
https://doi.org/10.12775/TMNA.2021.047Słowa kluczowe
ArrayAbstrakt
ArrayBibliografia
A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
G. Arioli and F. Gazzola, Existence and multiplicity results for quasilinear elliptic differential systems, Comm. Partial Differential Equations 25 (2000), 125–153.
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012.
L. Boccardo and G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 309–323.
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext Springer, New York, 2011.
A.M. Candela, E. Medeiros, G. Palmieri and K. Perera, Weak solutions of quasilinear elliptic systems via the cohomological index, Topol. Methods Nonlinear Anal. 36 (2010), 1–18.
A.M. Candela and G. Palmieri, Multiple solutions of some nonlinear variational problems, Adv. Nonlinear Stud. 6 (2006), 269–286.
A.M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations 34 (2009), 495–530.
A.M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Dynamical Systems, Differential Equations and Applications (X. Hou, X. Lu, A. Miranville, J. Su and J. Zhu, eds.), Discrete Contin. Dynam. Syst. Suppl. 2009 (2009), 133–142.
A.M. Candela and G. Palmieri, Multiplicity results for some nonlinear elliptic problems with asymptotically p-linear terms, Calc. Var. Partial Differential Equations 56 (2017), article no. 72, 39 pp.
A.M. Candela, G. Palmieri and A. Salvatore, Multiple solutions for some symmetric supercritical problems, Commun. Contemp. Math. 22 (2020), Article 1950075 (20 pages).
A.M. Candela, A. Salvatore and C. Sportelli, Existence and multiplicity results for a class of coupled quasilinear elliptic systems of gradient type, Adv. Nonlinear Stud. 21 (2021), 461–488.
D. de Figueiredo, Nonlinear elliptic systems, An. Acad. Brasil. Ci. 72 (2000), 453–469.
D. de Figueiredo, J.M. do Ó and B. Ruf, Non-variational elliptic systems in dimension two: a priori bounds and existence of positive solutions, J. Fixed Point Theory Appl. 4 (2008), 77–96.
L.F.O. Faria, O.H. Miyagaki, D. Motreanu and M. Tanaka, Existence results for nonlinear elliptic equations with Leray–Lions operator and dependence on the gradient, Nonlinear Anal. 96 (2014), 154–166.
O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
P. Lindqvist, On the equation div(|∇u|p−2 ∇u) + λ|u|p−2 u = 0, Proc. Amer. Math. Soc. 109 (1990), 157–164.
B. Pellacci and M. Squassina, Unbounded critical points for a class of lower semicontinuous functionals, J. Differential Equations 201 (2004), 25–62.
K. Perera, R.P. Agarwal and D. O’Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, Math. Surveys Monogr., vol. 161, Amer. Math. Soc., Providence RI, 2010.
P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, 1986.
J. Vélin and F. de Thélin, Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complut. Madrid 6 (1993), 153–194.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2022 Array
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0