Autor

DOI:

https://doi.org/10.12775/TMNA.2020.077

Słowa kluczowe

Abstrakt

Bibliografia

N. Ackermann, On a periodic Schrodinger equation with nonlocal superlinear part, Math. Z. 248 (2004), 423–443.

C.O. Alves, A.B. Nbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations 55 (2016), 1–28.

C.O. Alves, D. Cassani, C. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 , J. Differential Equations 261 (2016), 1933–1972.

C.O. Alves, F. Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations 263 (2017), 3943–3988.

C.O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations 257 (2014), 4133–4164.

C.O. Alves and M. Yang, Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 23–58.

C.O. Alves and M. Yang, Existence of solutions for a nonlocal variational problem in R2 with exponential critical growth, J. Convex Anal. 24 (2017), 1197–1215.

M. Calanchi, B. Ruf and Z. Zhang, Elliptic equations in R2 with one sided exponential growth, Commun. Contemp. Math. 6 (2004), 947–971.

L. Du, M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn.Syst., 39(2019), 5847–5866.

Y.Ding, F.Gao, M.Yang, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity, 33(2020), 6695–6728.

F. Gao and M. Yang, On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.

F. Gao and M. Yang, On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents, J. Math. Anal. Appl. 448 (2017), 1006–1041.

F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to Hardy–Littlewood–Sobolev inequality, Commun. Contemp. Math. 20 (2018), 1750037.

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), no. 1, 107–135.

S. Li, Z. Shen and M. Yang, Multiplicity of solutions for a nonlocal nonhomogeneous elliptic equation with critical exponential growth, J. Math. Anal. Appl. 475 (2019), 1685–1713.

E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57 (1976/77), 93–105.

E. Lieb and M. Loss, Analysis, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001.

P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063–1072.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam 1 (1985), 145–201.

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455–467.

I.M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrodinger–Newton equations, Classical Quantum Gravity 15 (1998), 2733–2742.

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.

V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579.

V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations 52 (2015), 199–235.

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/1971), 1077–1092.

S. Pekar, Untersuchunguber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

S.I. Pohozaev, The Sobolev embedding in the case pl = n, Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Mathematics Section, Moskov. Energet. Inst., Moscow, 1965, pp. 158–170.

B. Ribeiro, Critical elliptic problems in R2 involving resonance in high-order eigenvalues, Commun. Contemp. Math. 17 (2015), 145008, 22 pp.

S. Secchi, A note on Schrodinger–Newton systems with decaying electric potential, Nonlinear Anal. 72 (2010), 3842–3856.

E. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, Indiana Univ. Math. J. 7 (1958), 503–514.

N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484.

J. Wei and M. Winter, Strongly interacting bumps for the Schrodinger–Newton Equations, J. Math. Phys. 50 (2009), 012905.

M. Yang and Y. Ding, Existence of solutions for singularly perturbed Schrodinger equations with nonlocal part, Comm. Pure Appl. Anal. 12 (2013), 771–783.

Opublikowane

2021-12-05

Jak cytować

1.
, & . Topological Methods in Nonlinear Analysis [online]. 5 grudzień 2021, T. 58, nr 2, s. 569–590. [udostępniono 22.7.2024]. DOI 10.12775/TMNA.2020.077.

Numer

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0