Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
  • Home
  • /
  • Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
  1. Home /
  2. Archives /
  3. Vol 55, No 2 (June 2020) /
  4. Articles

Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces

Authors

  • Jakub Maksymiuk https://orcid.org/0000-0002-4317-716X
  • Karol Wroński https://orcid.org/0000-0001-5579-8812

Keywords

Regularity, elliptic equations, Orlicz-Sobolev spaces

Abstract

We consider the elliptic partial differential equation in the divergence form \[ -\mathrm{div}(\nabla G(\nabla u(x)))+ F_u(x,u(x))=0, \] where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions. We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{\loc}\cap W^{1,\infty}_{\loc}$.

References

A. Alberico, Boundedness of solutions to anisotropic variational problems, Comm. Partial Differential Equations 36 (2010).

G. Barletta and A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Roy. Soc. Edinburgh 147 (2017), 25–60.

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. 57 (2018).

M. Bulı́ček, G. Cupini, B. Stroffolini and A. Verde, Existence and regularity results for weak solutions to (p, q)-elliptic systems in divergence form, Adv. Calc. Var. 11 (2017).

M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Pointwise bounds for minimizers of some anisotropic functionals, Nonlinear Anal. 177 (2018).

A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000).

G. Cupini, P. Marcellini and E. Mascolo, Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. Ser. B (2009).

G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math. 137 (2012).

G. Cupini, P. Marcellini and E. Mascolo, Existence and regularity for elliptic equations under p,q-growth, Advances in Differential Equations 19 (2014).

G. Cupini, P. Marcellini and E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Anal. 153 (2017).

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003.

A. Kovalevsky, Integrability and boundedness of solutions to some anisotropic problems, J. Math. Anal. Appl. 432 (2015).

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1–30.

P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296–333.

L. Pick, A. Kufner, O. John, S. Fučı́k, Function Spaces 1, De Gruyter (2013).

F. Siepe, On the Lipschitz regularity of minimizers of anisotropic functionals, J. Math. Anal. Appl. 263 (2001), 69–94.

N.S. Trudinger, An imbedding theorem for H0 (G, Ω) spaces. Studia Math. 50 (1974), 17–30.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-05-30

How to Cite

1.
MAKSYMIUK, Jakub and WROŃSKI, Karol. Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces. Topological Methods in Nonlinear Analysis. Online. 30 May 2020. Vol. 55, no. 2, pp. 583 - 600. [Accessed 8 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 55, No 2 (June 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop