Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Connected component of positive solutions for singular superlinear semi-positone problems
  • Home
  • /
  • Connected component of positive solutions for singular superlinear semi-positone problems
  1. Home /
  2. Archives /
  3. Vol 55, No 1 (March 2020) /
  4. Articles

Connected component of positive solutions for singular superlinear semi-positone problems

Authors

  • Ruyun Ma

Keywords

Spectrum of singular problem, nonlinear boundary conditions, exterior domain, positive solutions

Abstract

Bifurcation theory is used to prove the existence of connected components of positive solutions for some classes of singular superlinear semi-positone problems with nonlinear boundary conditions.

References

A. Ambrosetti, D. Arcoya and B. Buffoni, Positive Solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations 7 (1994), no. 3, 655–663.

H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal. 44 (2001), 791–809.

D. Butler, E. Ko, E.K. Lee and R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2713–2731.

A. Castro, L. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl. 394 (2012), 432–437.

D.D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl. 456 (2017), no. 2, 872–881.

E. Ko, M. Ramaswamy and R. Shivaji, Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 423 (2015), no. 1, 399–409.

E. K. Lee, R. Shivaji and B. Son, Positive radial solutions to classes of singular problems on the exterior domain of a ball, J. Math. Anal. Appl. 434 (2016), no. 2, 1597–1611.

Y. Li, Y. Ding and E. Ibrahim, Positive radial solutions for elliptic equations with nonlinear gradient terms on an exterior domain, Mediterr. J. Math. 15 (2018), no. 3, 19 pp.

R. Ma and Y. An, Global structure of positive solutions for superlinear second order m-point boundary value problems, Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 279–290.

J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, Springer–Verlag, Berlin, 1987.

G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.

A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2005.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-03-04

How to Cite

1.
MA, Ruyun. Connected component of positive solutions for singular superlinear semi-positone problems. Topological Methods in Nonlinear Analysis. Online. 4 March 2020. Vol. 55, no. 1, pp. 51 - 62. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 55, No 1 (March 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop