Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of periodic solution for a tumor growth model with vaccine interaction
  • Home
  • /
  • Existence of periodic solution for a tumor growth model with vaccine interaction
  1. Home /
  2. Archives /
  3. Vol 55, No 1 (March 2020) /
  4. Articles

Existence of periodic solution for a tumor growth model with vaccine interaction

Authors

  • Canan Çelik https://orcid.org/0000-0002-4646-8181
  • Nigar Özarslan Tuncer https://orcid.org/0000-0003-3189-2745

Keywords

Coincidence degree theory, tumor-immune system, periodic solution

Abstract

This paper is devoted to the study of existence of positive periodic solutions of a tumor-immune competition model with vaccine interaction. By using the continuation theorem of coincidence degree theory developed by Gains and Mahwin, we establish the sufficient conditions for the existence of periodic solutions.

References

J.A. Adam and N. Bellomo, Survey of Models for Tumor-Immune System Dynamics, Birkhäuser, Boston, (1997).

J.C. Arciero, T.L. Jackson and D.E. Kirschner, Mathematical model of tumorimmune evasion and siRNA treatment, Discrete Contin. Dyn. Syst. Ser. B 4 (2004), 39–58.

N. Bellomo and I. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comp. Model 32 (2000), no. 3–4, 413–452.

R.E. Gaines and J.L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematic, vol. 568, Springer, 1977.

M. Galach, Dynamics of the tumor-immune system competition – the effect of time delay, Int. J. Appl. Math. Comput. Sci. 13, (2003), 395–406.

D. Kirschner and J.C. Panetta, Modeling immunotherapy of the tumor – immune interaction, J. Math. Biol. 37 (1998), 235—252

V. Kuznetsov, I. Makalkin, M. Taylor and A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol. 56 (1994), no. 2, 295–321.

V. Kuznetsov and G. Knott, Modeling tumor regrowth and immunotherapy, Math. Comp. Model 33 (2001), 1275–1287.

Y. Li and Y. Kuang, Periodic solutions in periodic state-dependent delay equations and population models, Proc. Amer. Math. Soc. 130 (2002), no. 5, 1345–1353.

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, 1979.

L.G. de Pillis, W. Gu and A. Radunskaya, Mixed immunotherapy and chemotherapy of tumors; modeling, applications and biological interpretations, J. Theor. Biol. 238 (2006), no. 4, 841–862.

L.G. de Pillis, A. Radunskaya and C.L. Wiseman, A validated mathematical model of cellmediated immune response to tumor growth, Cancer Res. 65 (2005), no. 17, 7950–7958.

S. Wilson and D. Levy, A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy, Bull. Math. Biol. 74 (2012), no. 7, 1485–1500.

M. Terabe, E. Ambrosino, S. Takaku, J. O’Konek, D. Venzon, S. Lonning, J.P. McPherson and J.A. Berzofsky, Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-U3b2 monoclonal antibody, Clin. Cancer Res. 15 (2009), no. 21, 6560–6569.

R. Thomlinson, Measurement and management of carcinoma of the breast, Clinical Radiology 33 (1982), no. 5, 481–493.

S. Wilson and D. Levy, A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy, Bull. Math. Bio. 74 (2012), 1485–1500.

R. Yafia, The effect of time delay and Hopf bifurcation in a tumor-immune system competition model with negative immune response, Appl. Math. (Warsaw) 36 (2009), no. 3, 349–364.

Z. Yang and J. Cao, Existence of periodic solutions in neutral state-dependent delays equations and models, J. Comput. Appl. Math. 174 (2005), 179–199.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-12-25

How to Cite

1.
ÇELIK, Canan and TUNCER, Nigar Özarslan. Existence of periodic solution for a tumor growth model with vaccine interaction. Topological Methods in Nonlinear Analysis. Online. 25 December 2019. Vol. 55, no. 1, pp. 37 - 49. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 55, No 1 (March 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop