Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Parabolic equations with localized large diffusion: Rate of convergence of attractors
  • Home
  • /
  • Parabolic equations with localized large diffusion: Rate of convergence of attractors
  1. Home /
  2. Archives /
  3. Vol 53, No 1 (March 2019) /
  4. Articles

Parabolic equations with localized large diffusion: Rate of convergence of attractors

Authors

  • Alexandre N. Carvalho
  • Leonardo Pires

Keywords

Localized large diffusion, reaction diffusion equations, rate of convergence, attractors

Abstract

In this paper we study the asymptotic nonlinear dynamics of scalar semilinear parabolic problems of reaction-diffusion type when the diffusion coefficient becomes large in a subregion in the interior to the domain. We obtain, under suitable assumptions, that the family of attractors behaves continuously and we exhibit the rate of convergence. An accurate description of the localized large diffusion is necessary.

References

J. M. Arrieta, F.D. Bezerra and A.N. Carvalho, Rate of convergence of global attractors of some perturbed reaction-diffusion problems, Topol. Methdos Nonlinear Anal. 41 (2013), no. 2, 229–253.

J.M. Arrieta, A.N. Carvalho and A. Rodrı́guez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions, J. Differential Equations 168 (2000), no. 1, 33–59.

J.M. Arrieta, A.N. Carvalho and A. Rodrı́guez-Bernal Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations 156 (1999), no. 2, 376–406.

J.M. Arrieta, A.N. Carvalho and A. Rodrı́guez-Bernal, Attractors for parabolic problems with nonlinear boundary bondition. Uniform bounds, Commun. Partial Differential Equations 25 (2000), no. 1–2, 1–37.

J.M. Arrieta and E. Santamaria, Distance of attractors of reaction-diffusion equations in thin domains, J. Differential Equations 263 (2017), no. 9, 5459–5506.

M.C. Bortolan, A.N. Carvalho, J.A. Langa and G. Raugel, Non-autonomous perturbations of morse-smale semigroups: stability of the phase diagram, Preprint.

V.L. Carbone, A.N. Carvalho and K. Schiabel-Silva, Continuity of attractors for parabolic problems with localized large diffusion, Nonlinear Anal. 68 (2008), no. 3, 515–535.

V.L. Carbone and J.G. Ruas-Filho, Continuity of the attractors in a singular problem arising in composite materials, Nonlinear Anal. 65 (2006), 1285–1305.

A.N. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional NonAutonomous Dynamical Systems, Springer, 2010.

A.N. Carvalho and A.L. Pereira, A sacalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations, J. Differential Equations 112 (1994), 81–130.

A.N. Carvalho and L. Pires, Rate of convergence of attractors for singularly perturbed semilinear problems, J. Math. Anal. Appl. 452 (2017), no. 1, 258–296.

A.N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim. 27 (2006), 785–829.

G. Fusco, On the explicit construction of an ode which has the same dynamics as a scalar parabolic PDE, J. Differential Equations 69 (1987), 85–110.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer–Velag, 1980.

S.Y. Pilyugun, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, vol. 1706, Springer, 1999.

A. Rodrguez-Bernal, Localized spatial homogenizations and large diffusion, SIAM J. Math. Anal. 29 (1998), no. 6, 1361–1380.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-02-16

How to Cite

1.
CARVALHO, Alexandre N. and PIRES, Leonardo. Parabolic equations with localized large diffusion: Rate of convergence of attractors. Topological Methods in Nonlinear Analysis. Online. 16 February 2019. Vol. 53, no. 1, pp. 1 - 23. [Accessed 3 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 53, No 1 (March 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop