Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Equivalence between uniform $L^{2^\star}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds for subcritical elliptic equations
  • Home
  • /
  • Equivalence between uniform $L^{2^\star}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds for subcritical elliptic equations
  1. Home /
  2. Archives /
  3. Vol 53, No 1 (March 2019) /
  4. Articles

Equivalence between uniform $L^{2^\star}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds for subcritical elliptic equations

Authors

  • Alfonso Castro
  • Nsoki Mavinga
  • Rosa Pardo

Keywords

A priori estimates, positive solutions, subcritical nonlinearity, radial solutions

Abstract

We provide sufficient conditions for a uniform $L^{2^\star}(\Omega)$ bound to imply a uniform $L^\infty (\Omega)$ bound for positive classical solutions to a class of subcritical elliptic problems in bounded $C^2$ domains in ${\mathbb R}^N$. We also establish an equivalent result for sequences of boundary value problems.

References

F.V. Atkinson and L.A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987), no. 3, 349–365.

A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41(1988), no. 3, 253–294.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential equations, Universitext, Springer, New York, 2011.

H. Brezis and R.E.L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977), no. 6, 601–614.

A. Castro and A. Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 101 (1987), no. 1, 57–64.

A. Castro and R. Pardo, A priori bounds for positive solutions of subcritical elliptic equations, Rev. Mat. Complut. 28 (2015), 715–731.

A. Castro and R. Pardo, Branches of positive solutions of subcritical elliptic equations in convex domains, Dynamical Systems, Differential Equations and Applications, AIMS Proceedings, (2015), 230–238.

A. Castro and R. Pardo, Branches of positive solutions for subcritical elliptic equations, Contributions to Nonlinear Elliptic Equations and Systems, Progress in Nonlinear Differential Equations and Their Applications 86 (2015), 87–98.

A. Castro and R. Pardo, A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.

D.G. de Figueiredo, P.-L. Lions and R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), no. 1, 41–63.

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901.

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer–Verlag, Berlin, second ed., 1983.

Z.-C .Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159–174.

D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 9 (1972/1973), 241–269.

P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441–467.

N. Mavinga and R. Pardo, A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems, J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188.

R. Nussbaum, Positive solutions of nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 51 (1975), (1975), no. 2, 461–482.

S.I. Pohozaev, On the eigenfunctions of the equation ∆u + λf (u) = 0, Dokl. Akad. Nauk SSSR 165 (1965), 36–39.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-01-12

How to Cite

1.
CASTRO, Alfonso, MAVINGA, Nsoki and PARDO, Rosa. Equivalence between uniform $L^{2^\star}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds for subcritical elliptic equations. Topological Methods in Nonlinear Analysis. Online. 12 January 2019. Vol. 53, no. 1, pp. 43 - 56. [Accessed 7 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 53, No 1 (March 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop