Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Integrability of the derivative of solutions to a singular one-dimensional parabolic problem
  • Home
  • /
  • Integrability of the derivative of solutions to a singular one-dimensional parabolic problem
  1. Home /
  2. Archives /
  3. Vol 52, No 1 (September 2018) /
  4. Articles

Integrability of the derivative of solutions to a singular one-dimensional parabolic problem

Authors

  • Atsushi Nakayasu
  • Piotr Rybka

Keywords

Strongly singular parabolic and elliptic equations

Abstract

We study integrability of the derivative of a solution to a singular one-dimensional parabolic equation with initial data in $W^{1,1}$. In order to avoid additional difficulties we consider only the periodic boundary conditions. The problem we study is a gradient flow of a convex, linear growth variational functional. We also prove a similar result for the elliptic companion problem, i.e.\ the time semidiscretization.

References

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs., The Clarendon Press, Oxford University Press, New York, 2000.

L. Beck, M. Bulı́ček, J. Málek and E. Süli, On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth, Arch. Ration. Mech. Anal. 225 (2017), 717–769.

L. Beck, M. Bulı́ček and E.Maringová, Globally lipschitz minimizers for variational problems with linear growth, https://arxiv.org/abs/1609.07601.

G. Bellettini, M. Novaga and G. Orlandi, Eventual regularity for the parabolic minimal surface equation, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5711–5723.

H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5; Notas de Matematica (50), North-Holland Publishing Co., Amsterdam, London, 1973.

V.Caselles, A.Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul. 6 (2007), no. 3, 879–894.

V.Caselles, A.Chambolle and M. Novaga, Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoam. 27 (2011), no. 1, 233–252.

O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence, R.I., 1968.

M. Matusik, and P. Rybka, Oscillating facets, Port. Math. 73, (2016), 1–40.

P.B. Mucha and P. Rybka, Well-posedness of sudden directional diffusion equations, Math. Meth. Appl. Sci. 36, (2013), 2359–2370.

P.B. Mucha and P. Rybka, A caricature of a singular curvature flow in the plane, Nonlinearity 21 (2008), 2281–2316.

A. Nakayasu and P. Rybka, Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions, Mathematics for Nonlinear Phenomena: Analysis and Computation, Proceedings in Honor of Professor Yoshikazu Giga’s 60th birthday, (Y. Maekawa, Sh. Jimbo, eds.), Springer Proceedings in Mathematics and Statistics, 2017, 195–214.

M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991.

L.I. Rudin, S.Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259–268.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-08-04

How to Cite

1.
NAKAYASU, Atsushi and RYBKA, Piotr. Integrability of the derivative of solutions to a singular one-dimensional parabolic problem. Topological Methods in Nonlinear Analysis. Online. 4 August 2018. Vol. 52, no. 1, pp. 239 - 257. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 1 (September 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop