Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Strongly resonant Robin problems with idefinite and unbounded potential
  • Home
  • /
  • Strongly resonant Robin problems with idefinite and unbounded potential
  1. Home /
  2. Archives /
  3. Vol 49, No 2 (June 2017) /
  4. Articles

Strongly resonant Robin problems with idefinite and unbounded potential

Authors

  • Nikolaos S. Papageorgiou
  • George Smyrlis

Keywords

Indefinite and unbounded potential, Robin boundary condition, strong resonance, multiple nontrivial solutions, critical groups

Abstract

We consider a Robin boundary value problem driven by the Laplacian plus an indefinite and unbounded potential. We assume that the reaction term of the equation is resonant with respect to the principal eigenvalue and the resonance is strong. Using primarily variational tools we prove two multiplicity theorems producing respectively two and three nontrivial smooth solutions.

References

S. Aizicovici, N.S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Mem. Amer. Math. Soc. Vol. 196, No. 905, Amer. Math. Soc., Providence, 2008.

A. Ambrosetti and G. Mancini, Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of simple eigenvalues, J. Differential Equations 28 (1978), 220–245.

D. Arcoya and D. Costa, Nontrivial solutions for a strongly resonant problem, Differential Integral Equations 8 (1995), 151–159.

D. Arcoya and L. Orsina, Landesman–Lazer conditions and quasilinear elliptic equations, Nonlinear Anal. 28 (1997), 1623–1632.

T. Bartsch and Z.Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), 115–131.

A. Castro, J. Cossio and C. Velez, Existence of seven solutions for asymptotically linear Dirichlet problems without symmetries, Ann. Mat. Pura Appl. 192 (2013), 607–619.

D. Costa and E. Silva, Existence of solution for a class of resonant elliptic problems, J. Math. Anal. Appl. 175 (1993), 411–423.

L. Gasinski and N.S. Papageorgiou, Nonlinear Analysis, Chapman Hall/CRC, Boca Raton, 2006.

L. Gasinski and N.S. Papageorgiou, Pairs of nontrivial solutions for Neumann problems, J. Math. Anal. Appl. 398 (2013), 649–663.

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261 (1982), 493–514.

S. Kyritsi and N.S. Papageorgiou, Multiple solutions for Dirichlet problems with an indefinite potential, Ann. Mat. Pura Appl. 192 (2013), 297–315.

F.M. Landesman and A. Lazer, Nonlinear perturbations of linear boundary value problems at resonance, J. Math. Mech. 19 (1969/1970), 609–623.

S. Liu and S. Li, Critical groups at infinity, saddle point reduction and elliptic resonant problems, Commun. Contemp. Math. 5 (2003), 761–773.

D. Lupo and S. Solimini, A note on a resonance problem, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), 1–7.

D. Motreanu, V. Motreanu and N.S. Papageorgiou, On resonant Neumann problems, Math. Ann. 354 (2012), 1117–1145.

D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variatonal Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.

N.S. Papageorgiou and F. Papalini, Seven solutions with sign information for sublinear equations with unbounded and indefinite potential and no symmetries, Israel J. Math. 201 (2014), 761–796.

N.S. Papageorgiou and V. Radulescu, Semilinear Neumann problems with an indefinite and unbounded potential and crossing nonlinearity, Contemp. Math. 595 (2013), 293–316.

N.S. Papageorgiou and V. Radulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc. 367 (2015), 8723–8756.

N.S. Papageorgiou and V. Radulescu, Multiple solutions with precise sign information for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), 2449–2479.

N.S. Papageorgiou and V. Radulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Revista Mat. Comput. 29 (2016), 91–126.

N.S. Papageorgiou and G. Smyrlis, On a class of parametric Neumann problems with indefinite and unbounded potential, Forum Math., DOI: 10.1515/forum-2012-0042.

N.S. Papageorgiou and G. Smyrlis, Resonant Robin problems with indefinite and unbounded potential, Topol. Methods Nonlinear Anal. (to appear).

P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.

X. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283–310.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-12-16

How to Cite

1.
PAPAGEORGIOU, Nikolaos S. and SMYRLIS, George. Strongly resonant Robin problems with idefinite and unbounded potential. Topological Methods in Nonlinear Analysis. Online. 16 December 2016. Vol. 49, no. 2, pp. 511 - 527. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 2 (June 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop