Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions for the non-local operator $(-\Delta+m^{2})^{s}-m^{2s}$ with $m\geq 0$
  • Home
  • /
  • Periodic solutions for the non-local operator $(-\Delta+m^{2})^{s}-m^{2s}$ with $m\geq 0$
  1. Home /
  2. Archives /
  3. Vol 49, No 1 (March 2017) /
  4. Articles

Periodic solutions for the non-local operator $(-\Delta+m^{2})^{s}-m^{2s}$ with $m\geq 0$

Authors

  • Vincenzo Ambrosio

Keywords

Nonlocal operators, linking theorem, periodic solutions, extension method

Abstract

By using variational methods, we investigate the existence of $T$-periodic solutions to \begin{equation*} \begin{cases} [(-\Delta_{x}+m^{2})^{s}-m^{2s}]u=f(x,u) &\mbox{in } (0,T)^{N}, \\ u(x+Te_{i})=u(x) &\mbox{for all } x \in \mathbb{R}^N, \ i=1, \dots, N, \end{cases} \end{equation*} where $s\in (0,1)$, $N> 2s$, $T> 0$, $m\geq 0$ and $f$ is a continuous function, $T$-periodic in the first variable, verifying the Ambrosetti-Rabinowitz condition, with a polynomial growth at rate $p\in (1, ({N+2s})/({N-2s}))$.

References

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

V. Ambrosio, Existence of heteroclinic solutions for a pseudo-relativistic Allen–Cahn type equation, Adv. Nonlinear Stud. 15 (2015), 395–414.

V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. 120 (2015), 262–284.

D. Applebaum, Lévy processes and stochastic calculus, Cambridge Stud. Adv. Math. 93 (2004).

A. Bènyi and T. Oh, The Sobolev inequality on the torus revisited, Publ. Math. Debrecen 83 (2013), no. 3, 359–374.

P. Biler, G. Karch and W. A. Woyczynski, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 613–637.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc. 367 (2015), 911–941.

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (2005), 1678–1732.

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093.

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. 2 171 (2010), no. 3, 1903–1930.

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremals solutions for some non-local semilinear equation, Comm. Partial Differential Equations 36 (2011), 1353–1384.

R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators; Asymptotic behaviour of the eigenfunctions, J. Funct. Anal. 91 (1990), 117–142.

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financ. Math. Ser., Chapman and Hall/CRC, Boca Raton, FL, (2004).

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer–Verlag, Berlin, 1976. Transl. from French by C.W. John.

A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Trascendental Functions, vol. 1,2 McGraw-Hill, New York (1953).

M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, DCDS A. http://arxiv.org/abs/1312.6516 (to appear).

J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys. 274 (1), 1–30.

E. H. Lieb and M. Loss, Analysis, 2nd Edition. Vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. 33.

E. H. Lieb and H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), 147–174.

E. H. Lieb and H. T. Yau, The stability and instability of relativistic matter, Comm. Math. Phys. 118 (2), (1988) 177–213.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, Springer–Verlag, New York 74 (1989).

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65 (1986).

M. Ryznar, Estimate of Green function for relativistic α-stable processes, Potential Analysis 17 (2002), 1–23.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2006), 67–112.

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 256 (2009), 1842–1864.

J. J. Stoker, Water Waves: The Mathematical Theory with Applications, Pure Appl. Math., vol. IV, Interscience Publishers, Inc., New York, (1957).

M. Struwe, Variational methods: Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer–Verlag, Berlin, (1990).

J. F. Toland, The Peierls–Nabarro and Benjamin–Ono equations, J. Funct. Anal. 145 (1997), 136–150.

M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications 24 (1996).

A. Zygmund, Trigonometric Series Vol. 1, 2, Cambridge University Press, Cambridge (2002).

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-10-05

How to Cite

1.
AMBROSIO, Vincenzo. Periodic solutions for the non-local operator $(-\Delta+m^{2})^{s}-m^{2s}$ with $m\geq 0$. Topological Methods in Nonlinear Analysis. Online. 5 October 2016. Vol. 49, no. 1, pp. 75 - 103. [Accessed 7 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 1 (March 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop