Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb R^n)$
  • Home
  • /
  • Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb R^n)$
  1. Home /
  2. Archives /
  3. Vol 48, No 2 (December 2016) /
  4. Articles

Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb R^n)$

Authors

  • Hans-Otto Walther

Keywords

Delay differential equation, state-dependent delay, unbounded delay, Fréchet space

Abstract

We construct a semiflow of continuously differentiable solution operators for delay differential equations $x'(t)=f(x_t)$ with $f$ defined on an open subset of the Fréchet space $C^1=C^1((-\infty,0],\mathbb{R}^n)$. This space has the advantage that it contains all histories $x_t=x(t+\cdot)$, $t\in\mathbb R$, of every possible entire solution of the delay differential equation, in contrast to a Banach space of maps $(-\infty,0]\to\mathbb R^n$ whose norm would impose growth conditions at $-\infty$. The semiflow lives on the set $X_f=\{\phi\in U:\phi'(0)=f(\phi)\}$ which is a submanifold of finite codimension in $C^1$. The hypotheses are that the functional $f$ is continuously differentiable (in the Michal-Bastiani sense) and that the derivatives have a mild extension property. The result applies to autonomous differential equations with state-dependent delay which may be unbounded but which is locally bounded. The case of constant bounded delay, distributed or not, is included.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-08-20

How to Cite

1.
WALTHER, Hans-Otto. Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb R^n)$. Topological Methods in Nonlinear Analysis. Online. 20 August 2016. Vol. 48, no. 2, pp. 507 - 537. [Accessed 2 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 48, No 2 (December 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop