Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fibonacci-like unimodal inverse limit spaces and the core Ingram conjecture
  • Home
  • /
  • Fibonacci-like unimodal inverse limit spaces and the core Ingram conjecture
  1. Home /
  2. Archives /
  3. Vol 47, No 1 (March 2016) /
  4. Articles

Fibonacci-like unimodal inverse limit spaces and the core Ingram conjecture

Authors

  • Henk Bruin
  • Sonja Štimac

DOI:

https://doi.org/10.12775/TMNA.2016.001

Keywords

Tent map, inverse limit space, Fibonacci unimodal map, structure of inverse limit spaces

Abstract

We study the structure of inverse limit space of so-called Fibonacci-like tent maps. The combinatorial constraints implied by the Fibonacci-like assumption allow us to introduce certain chains that enable a more detailed analysis of symmetric arcs within this space than is possible in the general case. We show that link-symmetric arcs are always symmetric or a well-understood concatenation of quasi-symmetric arcs. This leads to the proof of the Ingram Conjecture for cores of Fibonacci-like unimodal inverse limits.

References

A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003), 451–550.

M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc. 124 (1996), 3563–3570.

M. Barge, H. Bruin and S. Stimac, The Ingram Conjecture, Geom. Topol. 16 (2012), 2481–2516.

L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps, Fund. Math. 187 (2005), 171–192.

K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math. 160 (1999), 219–246.

K. Brucks and H. Bruin, Topics in one-dimensional dynamics, London Math. Soc. Student Texts 62, Cambridge University Press 2004.

H. Bruin, Combinatorics of the kneading map, Int. Jour. of Bifur. and Chaos 5 (1995), 1339–1349.

H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), 2229–2263.

H. Bruin, Quasi-symmetry of conjugacies between interval maps, Nonlinearity 9 (1996), 1191–1207.

H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces, Topology Proc. 31 (2007), 37–50.

H. Bruin, (Non)invertibility of Fibonacci-like unimodal maps restricted to their critical omega-limit sets, Topology Proc. 37 (2011), 459–480.

H. Bruin, G. Keller, T. Nowicki and S. van Strien, Wild Cantor Attractors exist, Ann. Math. (2) 143 (1996), 97–130.

H. Bruin, G. Keller and M. St.-Pierre, Adding machines and wild attractors, Ergodic Theory Dynam. Systems 17 (1997), 1267–1287.

F. Hofbauer, The topological entropy of a transformation x mapsto ax(1-x), Monath. Math. 90 (1980), 117–141.

F. Hofbauer and G. Keller, Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincar´e, Physique th´eorique, 53 (1990), 413–425.

L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points, Fund. Math. 177 (2003), 95–120.

G. Keller and T. Nowicki, Fibonacci maps re(al)-visited, Ergodic Theory Dynam. Systems 15 (1995), 99–120.

M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. Math. (2) 140 (1994), 347–404.

M. Lyubich and J. Milnor, The Fibonacci unimodal map, J. Amer.Math. Soc. 6 (1993), 425–457.

J. Milnor, On the concept of attractor, Commun. Math. Phys. 99 (1985), 177–195.

B. Raines and S. Stimac, A classification of inverse limit spaces of tent maps with non-recurrent critical point, Algebr. Geom. Topol. 9 (2009), 1049–1088.

S. Stimac, Structure of inverse limit spaces of tent maps with finite critical orbit, Fund. Math. 191 (2006), 125–150.

S. Stimac, A classification of inverse limit spaces of tent maps with finite critical orbit, Topology Appl. 154 (2007), 2265–2281.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-03-01

How to Cite

1.
BRUIN, Henk and ŠTIMAC, Sonja. Fibonacci-like unimodal inverse limit spaces and the core Ingram conjecture. Topological Methods in Nonlinear Analysis. Online. 1 March 2016. Vol. 47, no. 1, pp. 147 - 185. [Accessed 3 July 2025]. DOI 10.12775/TMNA.2016.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 47, No 1 (March 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 2

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop