Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Index 1 fixed points of orientation reversing planar homeomorphisms
  • Home
  • /
  • Index 1 fixed points of orientation reversing planar homeomorphisms
  1. Home /
  2. Archives /
  3. Vol 46, No 1 (September 2015) /
  4. Articles

Index 1 fixed points of orientation reversing planar homeomorphisms

Authors

  • José M. Salazar
  • Francisco Romero Ruiz del Portal

DOI:

https://doi.org/10.12775/TMNA.2015.044

Keywords

Fixed point index, Conley index, orientation reversing homeomorphisms, attractors, stability

Abstract

Let \(U \subset {\mathbb R}^2\) be an open subset, \(f\colon U \rightarrow f(U) \subset {\mathbb R}^2\) be an orientation reversing homeomorphism and let \(0 \in U\) be an isolated, as a~periodic orbit, fixed point. The main theorem of this paper says that if the fixed point indices \(i_{{\mathbb R}^2}(f,0)=i_{{\mathbb R}^2}(f^2,0)=1\) then there exists an orientation preserving dissipative homeomorphism $\varphi\colon {\mathbb R}^2 \rightarrow {\mathbb R}^2$ such that \(f^2=\varphi\) in a~small neighbourhood of \(0\) and \(\{0\}\) is a~global attractor for \(\varphi\). As a corollary we have that for orientation reversing planar homeomorphisms a~fixed point, which is an isolated fixed point for \(f^2\), is asymptotically stable if and only if it is stable. We also present an application to periodic differential equations with symmetries where orientation reversing homeomorphisms appear naturally.
Vol 46, No 1 (September 2015)

Downloads

  • Full Text

Published

2015-09-01

How to Cite

1.
SALAZAR, José M. and RUIZ DEL PORTAL, Francisco Romero. Index 1 fixed points of orientation reversing planar homeomorphisms. Topological Methods in Nonlinear Analysis. Online. 1 September 2015. Vol. 46, no. 1, pp. 223 - 246. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2015.044.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 1 (September 2015)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop