Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation
  • Home
  • /
  • The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation
  1. Home /
  2. Archives /
  3. Vol 46, No 1 (September 2015) /
  4. Articles

The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation

Authors

  • Quan-Guo Zhang
  • Hong-Rui Sun

DOI:

https://doi.org/10.12775/TMNA.2015.038

Keywords

Fractional differential equation, blow-up, global existence, Cauchy problems

Abstract

In this paper, we investigate the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations {_0^C D_t^\alpha u}-\triangle u=|u|^{p-1}u, x\in \Bbb{R}^N,\ t\ge0, u(0,x)=u_0(x), x\in \Bbb{R}^N, where $0\le\alpha\le 1$, $p\ge 1$, $u_0\in C_0(\Bbb{R}^N)$ and ${_0^CD_t^\alpha u}=({\partial}/{\partial t}){_0^{}I_t^{1-\alpha}(u(t,x)-u_0(x))}$, ${_0^{}I_t^{1-\alpha}}$ denotes left Riemann--Liouville fractional integrals of order $1-\alpha$. We prove that if $1\le p\le 1+{2}/{N}$, then every nontrivial nonnegative solution blow-up in finite time, and if $p\geq 1+{2}/{N}$ and $\|u_0\|_{L^{q_c}(\Bbb{R}^N)}$, $q_c={N(p-1)}/{2}$ is sufficiently small, then the problem has global solution.
Vol 46, No 1 (September 2015)

Downloads

  • Full Text

Published

2015-09-01

How to Cite

1.
ZHANG, Quan-Guo and SUN, Hong-Rui. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topological Methods in Nonlinear Analysis. Online. 1 September 2015. Vol. 46, no. 1, pp. 69 - 92. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2015.038.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 1 (September 2015)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 25

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop