Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lifting ergodicity in $(G,\sigma)$-extension
  • Home
  • /
  • Lifting ergodicity in $(G,\sigma)$-extension
  1. Home /
  2. Archives /
  3. Vol 30, No 1 (September 2007) /
  4. Articles

Lifting ergodicity in $(G,\sigma)$-extension

Authors

  • Mahesh Nerurkar

Keywords

Affine extensions, Dynamical Systems, ergodicity, cocycles

Abstract

Given a compact dynamical system $(X,T,m)$ and a pair $(G,\sigma)$ consisting of a compact group $G$ and a continuous group automorphism $\sigma$ of $G$, we consider the twisted skew-product transformation on $G\times X$ given by $$ T_\varphi (g,x) = (\sigma [(\varphi (x)g],Tx), $$ where $\varphi \colon X\rightarrow G$ is a continuous map. If $(X,T,m)$ is ergodic and aperiodic, we develop a new technique to show that for a large class of groups $G$, the set of $\varphi$'s for which the map $T_\varphi$ is ergodic (with respect to the product measure $\nu\times m$, where $\nu$ is the normalized Haar measure on $G$) is residual in the space of continuous maps from $X$ to $G$. The class of groups for which the result holds contains the class of all connected abelian and the class of all connected Lie groups. For the class of non-abelian fiber groups, this result is the only one of its kind.

Downloads

  • FULL TEXT

Published

2007-09-01

How to Cite

1.
NERURKAR, Mahesh. Lifting ergodicity in $(G,\sigma)$-extension. Topological Methods in Nonlinear Analysis. Online. 1 September 2007. Vol. 30, no. 1, pp. 193 - 210. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 30, No 1 (September 2007)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop