Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The suspension isomorphism for homology index braids
  • Home
  • /
  • The suspension isomorphism for homology index braids
  1. Home /
  2. Archives /
  3. Vol 28, No 2 (December 2006) /
  4. Articles

The suspension isomorphism for homology index braids

Authors

  • Maria C. Carbinatto
  • Krzysztof P. Rybakowski

Keywords

Conley index, homology index braid, suspension isomorphism, connection matrix

Abstract

Let $X$ be a metric space, $\pi$ be a local semiflow on $X$, $k\in\mathbb N$, $E$ be a $k$-dimensional normed space and $\widetilde\pi$ be the semiflow generated by the equation $\dot y=Ly$, where $L\co E\to E$ is a linear map whose all eigenvalues have positive real parts. We show in this paper that for every admissible isolated $\pi$-invariant set $S$ there is a well-defined isomorphism of degree $-k$ from the homology categorial Conley-Morse index of $(\pi\times\widetilde\pi,S\times\{0\})$ to the homology categorial Conley-Morse index of $(\pi,S)$ such that the family of these isomorphisms commutes with homology index sequences. In particular, given a partially ordered Morse decomposition $(M_i)_{i\in P}$ of $S$ there is an isomorphism of degree $-k$ from the homology index braid of $(M_i\times\{0\})_{i\in P}$ to the homology index braid of $(M_i)_{i\in P}$, so $C$-connection matrices of $(M_i\times\{0\})_{i\in P}$ are just $C$-connection matrices of $(M_i)_{i\in P}$ shifted by $k$ to the right.

Downloads

  • FULL TEXT

Published

2006-12-01

How to Cite

1.
CARBINATTO, Maria C. and RYBAKOWSKI, Krzysztof P. The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis. Online. 1 December 2006. Vol. 28, no. 2, pp. 199 - 233. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 28, No 2 (December 2006)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop