Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Conley index continuation and thin domain problems
  • Home
  • /
  • Conley index continuation and thin domain problems
  1. Home /
  2. Archives /
  3. Vol 16, No 2 (December 2000) /
  4. Articles

Conley index continuation and thin domain problems

Authors

  • Maria C. Carbinatto
  • Krzysztof P. Rybakowski

Keywords

Thin domains, singular perturbations, reaction-diffusion equations, Conley index

Abstract

Given $\varepsilon> 0$ and a bounded Lipschitz domain $\Omega$ in $\mathbb R^M\times \mathbb R^N$ let $\Omega_\varepsilon:=\{(x,\varepsilon y)\mid (x,y)\in \Omega\}$ be the $\varepsilon$-{\it squeezed domain\/}. Consider the reaction-diffusion equation $$ u_t = \Delta u + f(u) \leqno(\widetilde E_\varepsilon) $$ on $\Omega_\varepsilon$ with Neumann boundary condition. Here $f$ is an appropriate nonlinearity such that $(\widetilde E_\varepsilon)$ generates a (local) semiflow $\widetilde\pi_ \varepsilon$ on $H^1(\Omega_\varepsilon)$. It was proved by Prizzi and Rybakowski (J. Differential Equations, to appear), generalizing some previous results of Hale and Raugel, that there are a closed subspace $H^1_s(\Omega)$ of $H^1(\Omega)$, a closed subspace $L^2_s(\Omega)$ of $L^2(\Omega)$ and a sectorial operator $A_0$ on $L^2_s(\Omega)$ such that the semiflow $\pi_0$ defined on $H^1_s(\Omega)$ by the abstract equation $$\dot u+A_0u=\widehat f(u)$$ is the limit of the semiflows $\widetilde\pi_\varepsilon$ as $\varepsilon\to 0^+$. In this paper we prove a singular Conley index continuation principle stating that every isolated invariant set $K_0$ of $\pi_0$ can be continued to a nearby family $\widetilde K_\varepsilon$ of isolated invariant sets of $\widetilde \pi_\varepsilon$ with the same Conley index. We present various applications of this result to problems like connection lifting or resonance bifurcation.

Downloads

  • FULL TEXT

Published

2000-12-01

How to Cite

1.
CARBINATTO, Maria C. and RYBAKOWSKI, Krzysztof P. Conley index continuation and thin domain problems. Topological Methods in Nonlinear Analysis. Online. 1 December 2000. Vol. 16, no. 2, pp. 201 - 251. [Accessed 3 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 16, No 2 (December 2000)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop