Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions for impulsive differential inclusions with state dependent impulses
  • Home
  • /
  • Periodic solutions for impulsive differential inclusions with state dependent impulses
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Periodic solutions for impulsive differential inclusions with state dependent impulses

Authors

  • Grzegorz Gabor https://orcid.org/0000-0003-4876-0175
  • Sebastian Ruszkowski

DOI:

https://doi.org/10.12775/TMNA.2025.053

Keywords

Differential inclusion, state-dependent impulses, periodic solution, guiding function, Poincar\'e translation operator, solution map

Abstract

The paper investigates some qualitative properties of solutions to differential inclusions with state-dependent impulses. The first main objective is to prove that the mapping which assigns a set of solutions to the Cauchy problem for a given initial point is upper semicontinuous. This allows us to apply topological degree theory to the multivalued Poincaré operator along trajectories, which is the second main aim of the work, enabling us to establish the existence of periodic solutions. To verify the non-zero value of the topological degree, we utilize a generalized Krasnosel'skiǐ guiding function technique.

References

M. Akhmed, Principles of Discontinuous Dynamical Systems, Springer, New York, 2010.

J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.

D.D. Bainov, V. Lakshmikantham and P.S. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, vol. 6, World Scientific, 1989.

A. Belarbi, M. Benchohra and A. Ouahab, Nonconvex-valued impulsive functional differential inclusions with variable times, Nonlinear Oscillations 10 (2007), no. 4.

M. Benchohra and A. Ouahab, Impulsive neutral functional differential equations with variable times, Nonlinear Anal. 55 (2003), no. 6, 679–693.

M. Di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Bifurcations in Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer, New York, 2007.

S. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications, vol. 18, Berlin, New York, 2013.

G. Gabor, Differential inclusions with state-dependent impulses on the half-line: new Fréchet space of functions and structure of solution sets, J. Math. Anal. Appl. 446 (2017), 1427–1448.

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Topological Fixed Point Theory and Its Applications, Vol. 4, Springer, Dordrecht 2006.

L. Górniewicz and S. Plaskacz, Periodic solutions of differential inclusions in Rn , Boll. Unione Mat. Ital. A 7 (1993), no. 3, 409–420.

A. Grudzka and S. Ruszkowski, Structure of the solution set to differential inclusions with impulses at variable times, Electron. J. Differ. Equ. (2015), no. 114, 1–16.

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.

D.M. Hyman, On decreasing sequence of compact absolute retracts, Fund. Math. 64 (1969), no. 1, 91–97.

M. Kamenskiı̆, V. Obukhovskiı̆ and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., vol. 7, Walter de Gruyter, Berlin, New York, 2001.

M.A. Krasnosel’skiı̆ and P. Zabreı̆ko, Geometric Methods of Nonlinear Analysis, Springer, Berlin, 1975.

V.D. Milman and A. Myshkis, On the stability of motion in the presence of impulses, Siberian Math. J. 1 (1960), 233–237. (in Russian)

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
GABOR, Grzegorz and RUSZKOWSKI, Sebastian. Periodic solutions for impulsive differential inclusions with state dependent impulses. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 26. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.053.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop