An estimation of the Banach-Mazur distance between the space of convergent sequences and a concrete model of a space of affine continuous functions
DOI:
https://doi.org/10.12775/TMNA.2025.033Słowa kluczowe
Banach-Mazur distance, space of convergent sequences, hyperplane, space of affine continuous functionsAbstrakt
In this paper $c$ denotes the space of convergent sequences endowed with the supremum norm and $\mathcal{W}$ is the hyperplane of $c$ defined by $\mathcal{W}=\Big\{ (x(i))\in c: \lim\limits_{i\to\infty}({x(1)+x(2)})/{2}\Big\}$. We pose the problem of determining the Banach-Mazur distance $d(c,\mathcal{W})$ and present a method to estimate such distance from below together with tight bounds for $d(\mathcal{W},c)$.Bibliografia
S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warszawa, 1932.
C. Bessaga and A. Pelczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53–61.
M. Cambern, A generalized Banach–Stone theorem, Proc. Amer. Math. Soc. 17 (1966), 396–400.
M. Cambern, Isomorphisms of C0 (Y ) with Y discrete, Math. Ann. 188 (1970), 23–25.
M. Cambern, On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.
L. Candido and E.M. Galego, How far is C0 (Γ, X) with Γ discrete from C0 (K, X) spaces? Fund. Math. 218 (2012), 151–163.
L. Candido and E.M. Galego, How far is C(ω) from the other C(K) spaces? Studia Math. 217 (2013), no. 2, 123–138.
T. Domı́nguez Benavides and M. Japón, Non-expansive mappings in spaces of continuous functions, Extracta Math. 19 (2004), 1–20.
A. Gergont and L. Piasecki, The Banach–Mazur distance between isomorphic spaces of continuous functions is not always an integer number, J. Math. Anal. Appl. 357 (2024), no. 2, 128305.
A. Gergont and L. Piasecki, On isomorphic embeddings of c into L1 -preduals and some applications, J. Math. Anal. Appl. 492 (2020), no. 1, 124431, 11 pp.
A. Gergont and L. Piasecki, Some topological and metric properties of the space of `1 -predual hyperplanes in c, Colloq. Math. 168 (2022), no. 2, 229–247.
Y. Gordon, On the distance coefficient between isomorphic function spaces, Israel J. Math. 8 (1970), 391–397.
V. Gurariĭ, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk. 167 (1966), 971–973.
S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17–27.
R. McWilliams, On projections of separable subspaces of (m) onto (c), Proc. Amer. Math. Soc. 10 (1959), 872–876.
A.A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (Russian)
L. Piasecki and J. Villada, The Banach–Mazur distance between between C(∆) and C0 (∆) equals 2, Topol. Methods Nonlinear Anal. (to appear).
Z. Semadeni, Free compact convex sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 141–146.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0