Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topology and dynamics of a flow that has a non-saddle set or a W-set
  • Home
  • /
  • Topology and dynamics of a flow that has a non-saddle set or a W-set
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Topology and dynamics of a flow that has a non-saddle set or a W-set

Authors

  • Héctor Barge https://orcid.org/0000-0002-6598-7710
  • Jaime J. Sánchez-Gabites https://orcid.org/0000-0002-2418-0400
  • Jose M. R. Sanjurjo

DOI:

https://doi.org/10.12775/TMNA.2025.024

Keywords

Asymptotic behaviour, non-saddle sets, W-sets, Conley index

Abstract

The aim of this paper is to study dynamical and topological properties of a flow in the region of influence of an isolated non-saddle set or a $W$-set in a manifold. These are certain classes of compact invariant sets in whose vicinity the asymptotic behaviour of the flow is somewhat controlled. We are mainly concerned with global properties of the dynamics and establish cohomological relations between the non-saddle set and the manifold. As a consequence we obtain a dynamical classification of surfaces (orientable and non-orientable). We also examine robustness and bifurcation properties of non-saddle-sets and study in detail the behavior of $W$-sets in 2-manifolds.

References

K. Athanassopoulos, Explosions near isolated unstable attractors, Pacific J. Math. 210 (2003), no. 2, 201–214.

H. Barge, Čech cohomology, homoclinic trajectories and robustness of non-saddle sets, Discrete Contin. Dyn. Syst. 41 (2021), no. 6, 2677-2698.

H. Barge and J.M.R. Sanjurjo, J. Dynam. Differential Equations 30 (2018), no. 1, 257–272.

H. Barge and J.M.R. Sanjurjo, Dissonant points and the region of influence of nonsaddle sets, J. Differential Equations 268 (2020), no. 9, 5329–5352.

N.P. Bhatia, Attraction and nonsaddle sets in dynamical systems J. Differential Equations 8 (1970), 229–249.

N.P. Bhatia and G.P. Szegö, Stability Theory of Dynamical Systems, Classics in Mathematics, Springer, 2002.

K. Borsuk, Theory of Shape, Monografie Matematyczne, vol. 59, Polish Scientific Publishers, Warsaw, 1975.

W.C. Chewning and R.S. Owen, Local sections of flows on manifolds, Proc. Amer. Math. Soc. 49 (1975), 71–77.

R.C. Churchill, Isolated invariant sets in compact metric spaces, J. Differential Equations 12 (1972), 330-352.

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 1978.

C. Conley and R.W. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35–61.

J. Dydak and J. Segal, Shape Theory. An Introduction, Lecture Notes in Mathematics, vol. 688, Springer, 1978.

A. Giraldo, M.A. Morón, F.R. Ruiz del Portal and J.M.R. Sanjurjo, Some duality properties of non-saddle sets, Topology Appl. 113 (2001), no. 1–3, 51–59.

A. Giraldo and J.M.R. Sanjurjo, Topological robustness of non-saddle sets, Topology Appl. 156 (2009), no. 11, 1929–1936.

S. Mardešić and J. Segal, Shape Theory. The Inverse System Approach, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., 1982.

M.A. Morón, J.J. Sánchez-Gabites and J.M.R. Sanjurjo, Topology and dynamics of unstable attractors, Fund. Math. 197 (2007), 239-252.

I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), no. 2, 259–269.

D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1–41.

J.M.R. Sanjurjo, On the structure of uniform attractors, J. Math. Anal. Appl. 192 (1995), 519–528.

J.J. Sánchez-Gabites, Unstable attractors in manifolds, Trans. Amer. Math. Soc. 362 (2010), 3563–358

E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
BARGE, Héctor, SÁNCHEZ-GABITES, Jaime J. and SANJURJO, Jose M. R. Topology and dynamics of a flow that has a non-saddle set or a W-set. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 30. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.024.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop