Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Relative sectional number and the coincidence property
  • Home
  • /
  • Relative sectional number and the coincidence property
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Relative sectional number and the coincidence property

Authors

  • Cesar A. Ipanaque Zapata https://orcid.org/0000-0003-2558-894X
  • Felipe A. Torres Estrella

DOI:

https://doi.org/10.12775/TMNA.2025.016

Keywords

Fixed point property, coincidence property, configuration spaces, (relative) sectional category, (relative) sectional number (relative) topological complexity

Abstract

For a Hausdorff space $Y$, a topological space $X$ and a map $g\colon X\to Y$, we present a connection between the relative sectional number of the first coordinate projection $\pi_{2,1}^Y\colon F(Y,2)\to Y$ with respect to $g$, and the coincidence property (CP) for $(X,Y;g)$, where $F(Y,2)$ stands for the ordered configuration space of $2$ distinct points on $Y$, and $(X,Y;g)$ has the coincidence property CP if, for every map $f\colon X\to Y$, there is a point $x$ of $X$ such that $f(x)=g(x)$. Explicitly, we demonstrate that $(X,Y;g)$ has the CP if and only if 2 is the minimal cardinality of open covers $\{U_i\}_{1\leq i\leq n}$ of $X$ such that each $U_i$ admits a local lifting for $g$ with respect to $\pi_{2,1}^Y$ This characterization connects a standard problem in coincidence theory to current research trends in sectional category and topological robotics. Motivated by this connection, we introduce the notion of relative topological complexity of a map.

References

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003.

E. Fadell, Recent results in the fixed point theory of continuous maps, Bull. Amer. Math. Soc. 76 (1970), 10–29.

E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), no. 4, 111–118.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.

J. González, M. Grant and L. Vandembroucq, Hopf invariants for sectional category with applications to topological robotics, Quart. J. Math. 70 (2019), no. 4, 1209–1252.

A. Hatcher, Algebraic Topology, Cambridge University Press, 2001.

W. Holsztyński, Une généralisation du théorème de Brouwer sur les points invariants, Bull. Acad. Polon. Sci. Sér. Sci. Math . Astronom. Phys. 12 (1964), 603–606.

W. Holsztyński, Universality of the product mappings onto products of I n and snake-like spaces, Fund. Math. 64 (1969), no. 2, 147–155.

W. Holsztyński, On the product and composition of universal mappings of manifolds into cubes, Proc. Amer. Math. Soc. 58 (1976), no. 1, 311–314.

I.M. James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978), no. 4, 331–348.

A. Murillo and J. Wu, Topological complexity of the work map, J. Topol. Anal. 13 (2021), no. 01, 219–238, DOI: 10.1142/S179352532050003X.

P. Pavešić, Complexity of the forward kinematic map, Mech. Mach. Theory 117 (2017), 230–243, DOI: 10.1016/j.mechmachtheory.2017.07.015.

P. Pavešić, A topologist’s view of kinematic maps and manipulation complexity, Topological Complexity and Related Topics, Contemporary Mathematics, vol. 702, 2018, pp. 61–83.

P. Pavešić, Topological complexity of a map, Homology, Homotopy and Applications, vol. 21 (2), International Press of Boston, 2019, pp. 107–130.

Y. Rudyak and S. Soumen, Relative LS categories and higher topological complexities of maps, Topol. Appl. 322 (2022), 108317, DOI: 10.1016/j.topol.2022.108317.

H. Schirmer, Coincidence producing maps onto trees, Canad. Math. Bull. 10 (1967), no. 3, 417–423.

H. Schirmer, Coincidence sets of coincidence producing maps, Canad. Math. Bull. 26 (1983), no. 2, 167–170.

A.S. Schwarz, The genus of a fiber space, Dokl. Akad. Nauk SSSR (NS) 119 (1958), 219–222.

J. Scott, On the topological complexity of maps, Topol. Appl. 314 (2022), 108094, DOI: 10.1016/j.topol.2022.108094.

K. Tanaka, Sectional category of maps related to finite spaces, Topol. Methods Nonlinear Anal. 63 (2024), no. 2, 537–557, DOI: 10.12775/TMNA.2023.029.

C.A.I. Zapata, Non-contractible configuration spaces, MORFISMOS 22 (2018), 27–39.

C.A.I. Zapata, Espaços de configurações no problema de planificação de movimento simultâneo livre de colisões, Ph.D. thesis, Universidade de São Paulo, 2022 (in Portuguese).

C.A.I. Zapata and J. González, Sectional category and the fixed point property, Topol. Methods Nonlinear Anal. 56 (2020), no. 2, 559–578.

C.A.I. Zapata and J. González, Higher topological complexity of a map, Turkish J. Math. 47 (2023), no. 6, 1616–1642.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
ZAPATA, Cesar A. Ipanaque and ESTRELLA, Felipe A. Torres. Relative sectional number and the coincidence property. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 18. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.016.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop