Flexibility of generalized entropy for wandering dynamics
DOI:
https://doi.org/10.12775/TMNA.2025.002Keywords
Generalized entropy, Polynomial entropy, FlexibilityAbstract
We show a flexibility result in the context of generalized entropy. The space of dynamical systems we work with are homeomorphisms on the sphere, whose non-wandering set consists of only one fixed point.References
J. Bochi, A. Katok and F.R. Hertz, Flexibility of Lyapunov exponents (2019), arXiv:1908.07891.
J. Correa and H. de Paula, Polynomial entropy of Morse–Smale diffeomorphisms on surfaces, Bull. Sci. Math. 182 (2023), 103225.
J. Correa and E.R. Pujals, Orders of growth and generalized entropy, J. Inst. Math. Jussieu 22 (2023), 1581–1613.
S. Galatolo, Global and local complexity in weakly chaotic dynamical systems, Discrete Contin. Dyn. Syst. 9 (2003), 1607–1624.
L. Hauseux and F. Le Roux, Entropie polynomiale des homéomorphismes de Brouwer, Ann. H. Lebesgue 2 (2019), 39–57.
A. Kanigowski, A. Katok and D. Wei, Survey on entropy-type invariants of subexponential growth in dynamical systems (2020), arXiv: 2004.04655.
A. Katok and J.P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Ann. Inst. H. Poincaré Probab. Stat. 33 (1997), 323–338.
J.P. Marco, Polynomial entropies and integrable Hamiltonian systems, Regul. Chaotic Dyn. 18 (2013), 623–655.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Javier Correa, Hellen de Paula

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0