Existence of ground state solutions for the nonlinear elliptic equations with zero mass on lattice graphs
DOI:
https://doi.org/10.12775/TMNA.2025.005Słowa kluczowe
Lattice graphs, zero mass, ground states, variational methods, elliptic equationsAbstrakt
In this paper, we will study the following nonlinear elliptic equation with zero mass on the lattice graph \begin{equation}\label{A}\tag{A} \begin{cases} -\Delta_{p} u= K(x)f(u) & \hbox{in } \mathbb{Z}^N, \\ u\in D^{1, p}\big(\mathbb{Z}^N\big), \end{cases} \end{equation} where $ N\geq 3$, $1< p< N$, $K$ is a nonnegative potential function, $f$ is a continuous function with quasicritical growth or supercritical growth. By employing variational methods, we establish the existence of ground states for the above equation with an asymptotically periodic potential and vanishing potential at infinity. For the case of asymptotically periodic potential, we also generalize the main result from $\mathbb{Z}^N$ to quasi-transitive graphs.Bibliografia
C.O. Alves and M.A.S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), 1977–1991.
C.O. Alves, M.A.S. Souto and M. Montenegro, Existence of solution for two classes of elliptic problems in RN with zero mass, J. Differential Equations 252 (2012), 5735–5750.
A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005), 117–144.
V. Ambrosio, Zero mass case for a fractional Berestycki–Lions-type problem, Adv. Nonlinear Anal. 7 (2018), 365–374.
A. Azzollini and A. Pomponio, Compactness results and applications to some “zero mass” elliptic problems, Nonlinear Anal. 69 (2008), 3559–3576.
A. Azzollini and A. Pomponio, On a “zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud. 7 (2007), 599–628.
V. Benci and D. Fortunato, Towards a unified theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), 379–414.
V. Benci, C.R. Grisanti and A.M. Micheletti, Existence and non-existence of the ground state solution for the nonlinear Schrödinger equations with V (∞) = 0, Topol. Methods Nonlinear Anal. 26 (2005), 203–219.
V. Benci, C.R. Grisanti and A.M. Micheletti, Existence of solutions for the nonlinear Schrödinger equations with V (∞) = 0, Contributions to Non-Linear Analysis, Progr. Nonlinear Differential Equations Appl., vol. 66, Birkhäuser, Basel, 2006, pp. 53–65.
V. Benci and A.M. Micheletti, Solutions in exterior domains of null mass nonlinear field equations, Adv. Nonlinear Stud. 6 (2006), 171–198.
H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–345.
B. Gidas, Bifurcation phenomena in Mathematical Physics and Related Topics, NATO Adv. Study Inst. Ser. C Math. Phys. Sci., vol. 54, D. Reidel Publishing CompanyDordrecht, 1980.
B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.
A. Grigor’yan, Introduction to Analysis on Graphs, University Lecture Series, vol. 71, American Mathematical Society, Providence, RI, 2018, pp. viii+150.
A. Grigor’yan, Y. Lin and Y.Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), 4924–4943.
A. Grigor’yan, Y. Lin and Y.Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), 1311–1324.
Z.T. He and C. Ji, Existence and multiplicity of solutions for the logarithmic Schrödinger equation with a potential on lattice graphs, J. Geom. Anal. 34 (2024), paper no. 378, 3 pp.
Z.T. He and C. Ji, The double phase problems on lattice graphs, J. Differential Equations 438 (2025), 113380.
B.B. Hua and R.W. Li, The existence of extremal functions for discrete Sobolev inequalities on lattice graphs, J. Differential Equations 305 (2021), 224–241.
B.B. Hua, R.W. Li and F. Münch, Extremal functions for the second-order Sobolev inequality on groups of polynomial growth (2022), arXiv: 2205.00150v1.
B. B. Hua and L.L. Wang, Dirichlet p-Laplacian eigenvalues and Cheeger constants on symmetric graphs, Adv. Math. 364 (2020), 106997.
B.B. Hua and W.D. Xu, Existence of ground state solutions to some nonlinear Schrödinger equations on lattice graphs, Calc. Var. Partial Differential Equations 62 (2023), no. 127, 17 pp.
B.B. Hua and W.D. Xu, The existence of ground state solutions for nonlinear pLaplacian equations on lattice graphs (2023), arXiv: 2310.08119v1.
A. Huang, Y. Lin and S.-T. Yau, Existence of solutions to mean field equations on graphs, Comm. Math. Phys. 377 (2020), 613–621.
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th ed., Springer, Berlin, 2008.
W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press-Cambridge, 2000.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Chao Ji, Olímpio H. Miyagaki

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0