Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A classification of semi-equivelar gems of PL d-manifolds on the surface with Euler characteristic -1
  • Home
  • /
  • A classification of semi-equivelar gems of PL d-manifolds on the surface with Euler characteristic -1
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

A classification of semi-equivelar gems of PL d-manifolds on the surface with Euler characteristic -1

Authors

  • Anshu Agarwal https://orcid.org/0009-0005-4327-054X
  • Biplab Basak https://orcid.org/0000-0002-4978-7022

DOI:

https://doi.org/10.12775/TMNA.2024.053

Keywords

Semi-equivelar maps, graph encoded manifold, semi-equivelar gems, regular embedding

Abstract

A semi-equivelar gem of a PL $d$-manifold is a regular colored graph that represents the PL $d$-manifold and regularly embeds on a surface, with the property that the cyclic sequence of lengths of faces in the embedding around each vertex is identical. In \cite{bb24}, the authors classified semi-equivelar gems of PL $d$-manifolds embedded on surfaces with Euler characteristics greater than or equal to zero. In this article, we focus on classifying semi-equivelar gems of PL $d$-manifolds embedded on the surface with Euler characteristic $-1$. We prove that if a semi-equivelar gem embeds regularly on the surface with Euler characteristic $-1$, then it belongs to one of the following types: $(8^3)$, $(6^2,8)$, $(6^2,12)$, $(10^2,4)$, $(12^2,4)$, $ (4,6,14)$, $(4,6,16)$, $(4,6,18)$, $(4,6,24)$, $(4,8,10)$, $(4,8,12)$ and $(4,8,16)$. Furthermore, we provide constructions that demonstrate the existence of such gems for each of the aforementioned types.

References

B. Basak, Regular genus and gem-complexity of some mapping tori, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 113 (3) (2019), 2479–2493.

B. Basak, 3-regular colored graphs and classification of surfaces, Discrete Comput. Geom. 58 (2017), no. 2, 345–354.

B. Basak and M. Binjola, Lower bounds for regular genus and gem-complexity of PL 4-manifolds with boundary, Forum Math. 33 (2021), no. 2, 289–304.

B. Basak and M. Binjola, Semi-equivelar gems of PL d-manifolds, Beitr Algebra Geom. 66 (2025), no. 2, 239–252..

B. Basak and M.R. Casali, Lower bounds for regular genus and gem-complexity of PL 4-manifolds, Forum Math. 29 (2017), no. 4, 761–773.

D. Bhowmik and A.K. Upadhyay, A classification of semi-equivelar maps on the surface of Euler characteristic −1, Indian J. Pure Appl. Math. 52 (2021), no. 1, 289–296.

J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, New York, 2008.

U. Brehm and W. Kühnel, Equivelar maps on the torus, Eur. J. Combinatorics 29(8) (2008), 1843–1861.

R. Chiavacci and G. Pareschi, Some bounds for the regular genus of PL-manifolds, Discrete Math. 82 (1990), 165–180.

B. Datta and D. Maity, Semi-equivelar maps on the torus are Archimedean, Discrete Math. 341 (2018), no. 12, 3296–3309.

B. Datta and D. Maity, Platonic solids, Archimedean solids and semi-equivelar maps on the sphere, Discrete Math. 345 (2022), no. 1, paper no. 112652, 13 pp.

M. Ferri and C. Gagliardi, The only genus zero n-manifold is Sn , Proc. Amer. Math. Soc. 85 (1982), 638–642.

C. Gagliardi, Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), 473–481.

C. Gagliardi, Regular imbeddings of edge-coloured graphs, Geom. Dedicata 11 (1981), 397–414.

Online First Articles

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
AGARWAL, Anshu and BASAK, Biplab. A classification of semi-equivelar gems of PL d-manifolds on the surface with Euler characteristic -1. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. pp. 1 - 20. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2024.053.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop