Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Σ-shaped bifurcation curves influenced by nonlinear boundary conditions for classes of reaction diffusion systems
  • Home
  • /
  • Σ-shaped bifurcation curves influenced by nonlinear boundary conditions for classes of reaction diffusion systems
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Σ-shaped bifurcation curves influenced by nonlinear boundary conditions for classes of reaction diffusion systems

Authors

  • Ananta Acharya
  • Nalin Fonseka
  • Alketa Henderson
  • Ratnasingham Shivaji

DOI:

https://doi.org/10.12775/TMNA.2024.040

Keywords

Steady states, reaction-diffusion, nonlinear boundary conditions, bifurcation curves, multiplicity

Abstract

We analyse positive solutions to steady state reaction diffusion systems of the form: \begin{equation*} \begin{cases} - \Delta u = \lambda f_1(v) &\text{in } \Omega, \\ - \Delta v = \lambda f_2(u)&\text{in } \Omega, \\ \noalign{\vskip3pt} \dfrac{\partial u}{\partial \eta}+ \sqrt{\lambda}g_1(v)u = 0 &\text{in }\partial \Omega,\\ \noalign{\vskip3pt} \dfrac{\partial v}{\partial \eta}+ \sqrt{\lambda}g_2(u)v = 0 &\text{in }\partial \Omega, \end{cases} \end{equation*} where $\lambda> 0$ is a parameter, $\Omega$ is a bounded domain in $\mathbb{R}^N$; $N > 1$ with smooth boundary $\partial \Omega$ or $\Omega=(0,1)$, $\frac{\partial z}{\partial \eta}$ is the outward normal derivative of $z$, $f_1, f_2 \in C([0, \infty) , [0, \infty))$ are increasing functions, differentiable on $[0, r)$ for some $r> 0$, $f_1(0) = f_2(0) = 0$, $f_1'(0) = f_2'(0) = 1$, $ \lim\limits_{s \to \infty} {f_1(Mf_2(s))}/{s} = 0 $ for each $M> 0$ ($f_1, f_2$ satisfy a combined sublinear condition at infinity), $g_1, g_2 \in C([0, \infty) , (0, 1])$ are nonincreasing functions such that $g_1(0)= g_2(0)=1$, and $\underline{g} := \min\Big \{\lim\limits_{s \rightarrow \infty} g_1(s), \lim\limits_{s \rightarrow \infty} g_2(s)\Big\} > 0$. We discuss the existence of multiple positive solutions for certain ranges of $\lambda$ leading to the occurrence of $\Sigma$-shaped bifurcation diagrams. Our results are established via the method of sub-supersolutions.

References

A. Acharya, N. Fonseka, J. Quiroa and R. Shivaji, Σ-Shaped Bifurcation Curves, Adv. Nonlinear Anal. 10 (2021), no. 1, 1255–1266.

A. Acharya, N. Fonseka and R. Shivaji, Σ-shaped bifurcation curves for classes of elliptic systems, Discrete Contin. Dyn. Syst. Ser. S 15 (2022), no. 10, 2795–2806, MR 4470544.

A. Acharya, N. Fonseka and R. Shivaji, Analysis of reaction diffusion systems where a parameter influences both the reaction terms as well as the bounday, Bound. Value Probl. 2021 (2021), article no. 15, 8 pp.

J. Ali, M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Intergral Equations 19 (2006), no. 6, 669–680.

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.

A. Castro, J.B. Garner and R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), 214–220.

J.T. Cronin, N. Fonseka, J. Goddard, J. Leonard and R. Shivaji, Modeling the effects of density dependent emigration, weak Allee effects, and matrix hostility on patch-level population persistence, Math. Biosci. Eng. 17 (2019), no. 2, 1718–1742.

J.T. Cronin, J. Goddard and R. Shivaji, Effects of patch-matrix composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol. 81 (2019), no. 10, 3933–3975.

N. Fonseka, R. Shivaji, B. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl. 476 (2019), no. 2, 480–494.

J. Goddard II, Q. Morris, S. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl. 1 (2018), article no. 170.

F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J. 31 (1982), 213–221.

C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

M.A. Rivas and S. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. of Var. 25 (2019), 45.

R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications (V. Lakshmikantham, ed.), Lecture Notes in Pure and Applied Mathematics, vol. 109, 1987, pp. 561–566.

Online First Articles

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
ACHARYA, Ananta, FONSEKA, Nalin, HENDERSON, Alketa and SHIVAJI, Ratnasingham. Σ-shaped bifurcation curves influenced by nonlinear boundary conditions for classes of reaction diffusion systems. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. pp. 1 - 26. [Accessed 3 July 2025]. DOI 10.12775/TMNA.2024.040.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop