Coincidence theorems for finite topological spaces
DOI:
https://doi.org/10.12775/TMNA.2024.028Keywords
Finite $T_0$-spaces, Alexandroff spaces, posets, multivalued maps, fixed points, dynamical systems, approximation of polyhedraAbstract
In this work, we adapt the definition of the Vietoris map to the setting of finite topological spaces and establish several coincidence theorems. From these theorems, we derive a Lefschetz fixed point theorem for multivalued maps, which extends recent results in the field. Finally, we illustrate an application of this theory in approximating discrete dynamical systems.References
P.S. Alexandroff, Diskrete Räume, Mathematiceskiı̆ Sbornik (N.S.) 2 (1937), 501–518.
K. Baclawski and A. Björner, Fixed points in partially ordered sets, Adv. Math. 31 (1979), 263–287.
J.A. Barmak, Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Mathematics 2032, Springer, 2011.
J.A. Barmak, On Quillen’s Theorem A for posets, J. Comb. Theory Ser. A. 118 (2011), 2445–2453.
J.A. Barmak and E.G. Minian, Minimal finite models, J. Homotopy Relat. Struct. 2 (2007), 127–140.
J.A. Barmak and E.G. Minian, Automorphism groups of finite spaces, Discrete Math. 309 (2009), 3424–3426.
J.A. Barmak, M. Mrozek and T. Wanner, A Lefschetz fixed point theorem for multivalued maps of finite spaces, Math. Z. 294 (2020), 1477–1497.
J.A. Barmak, M. Mrozek and T. Wanner, Conley index for multivalued maps on finite topological spaces, Found Comput Math. (2024).
E.G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. 51 (1950), 534–543.
P.J. Chocano, D. Mondéjar Ruiz, M.A. Morón and F.R. Ruiz del Portal, On the triviality of flows in Alexandroff spaces, Topol. Appl. 339 (2023).
P.J. Chocano, M.A. Morón, and F.R. Ruiz del Portal, Topological realizations of groups in Alexandroff spaces, Rev. R. Acad. Cien. Serie A. Mat. 115 (2021).
P.J. Chocano, M.A. Morón, and F.R. Ruiz del Portal, Computational approximations to compact metric spaces, Phys. D: Nonlinear Phenomena 433 (2022).
P.J. Chocano, M.A. Morón, and F.R. Ruiz del Portal, On some topological realizations of groups and homomorphisms, Trans. Amer. Math. Soc. 375 (2022), 8635–8649.
E. Clader, Inverse limits of finite topological spaces, Homol. Homotop. App. 11 (2009), 223–227.
S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214–222.
R. Forman, Combinatorial vector fields and dynamical systems, Math. Z. 228 (1998), 629–681.
R. Forman, Morse Theory for Cell Complexes, Adv. Math. 134 (1998), 90–145.
K.A. Hardie, and J.J.C. Vermeulen, Homotopy theory of finite and locally finite T0 spaces, Exp. Math. 11 (1993), 331–341.
A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
T. Kaczynski, M. Mrozek and T. Wanner, Towards a formal tie between combinatorial and classical vector field dynamics, J. Comput. Dyn. 3 (2016), 17–50.
M. Lipiński, J. Kubica, M. Mrozek, and T. Wanner, Conley–Morse–Forman theory for generalized combinatorial multivector fields on finite topological spaces, J. Appl. and Comput. Topol. 7 (2023), 139–184.
S. Mardešic and J. Segal, Shape Theory: The Inverse System Approach, North-Holland Mathematical Library, 1982.
J.P. May, Finite Spaces and Larger Contexts, 2016 (unpublished book).
M.C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465–474.
K. Mischaikow and V. Nanda, Morse Theory for Filtrations and Efficient Computation of Persistent Homology, Discrete Comput. Geom. 50 (2013), 330–353.
M. Mrozek, Conley–Morse–Forman theory for combinatorial multivector fields on Lefschetz Complexes, Found. Comput. Math. 17 (2017), 1585–1633.
M. Mrozek and T. Wanner, Creating semiflows on simplicial complexes from combinatorial vector fields, J. Differential Equations 304 (2021), 375–434.
J.R. Munkres, Elements of Algebraic Topology, Addison–Wesley, 1984.
M.J. Powers, Multi-valued mappings and Lefschetz fixed point theorems, Math. Proc. Camb. Philos. Soc. 68 (1970), 619–630.
I. Rival, A fixed point theorem for finite partially ordered sets, J. Comb. Theory Ser. A. 21 (1976), 309–318.
E.H. Spanier, Algebraic Topology, Springer–Verlag, New York, Berlin, 1981.
L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), 454–472.
J.W. Walker, Homotopy type and Euler characteristics of partially ordered sets, European J. Combin. 2 (1981), 373–384.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Manuel A. Morón, Pedro J. Chocano, Francisco R. Ruiz del Portal

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0