Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Common fixed points in Chebyshev center for a semigroup of isometry mappings
  • Home
  • /
  • Common fixed points in Chebyshev center for a semigroup of isometry mappings
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Common fixed points in Chebyshev center for a semigroup of isometry mappings

Authors

  • Sharma Abhishek https://orcid.org/0009-0008-3800-7386
  • Sankara Narayanan Rajesh https://orcid.org/0000-0002-0597-730X

DOI:

https://doi.org/10.12775/TMNA.2024.035

Keywords

Isometry mappings, common fixed points, topological semigroup, semigroup action, left reversible semigroup, normal structure, Chebyshev center

Abstract

In this article, we prove that if $K$ is a nonempty weakly compact convex set having the normal structure in a Banach space $B$ and $\mathfrak{F}$ is a left reversible semitopological semigroup of isometry mappings from $K$ into itself, then there exists a point in $C(K)$ which is fixed by every member in $\mathfrak{F}$. This gives an affirmative answer to a question raised by Lim et al.

References

L.P. Belluce, W.A. Kirk and E.F. Steiner, Structure in Banach spaces, Pacific J. Math. 26 (1968), 433–440.

M.S. Brodskiı̆ and D.P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 837–840.

A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, vol. I, Mathematical Surveys, No. 7. American Mathematical Society, Providence, R.I., 1961

M.M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317.

M. Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 44 (1974), 369–374.

R. Geremia and F. Sullivan, Multidimensional volumes and moduli of convexity in Banach spaces, Ann. Mat. Pura Appl. 127 (1981), no. 4, 231–251.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.

E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367–379.

R.D. Holmes and A.T. Lau, Non-expansive actions of topological semigroups and fixed points, J. London Math. Soc. 5 (1972), no. 2, 330–336.

W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006.

W.A. Kirk and B. Sims (eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.

A.T.-M. Lau and Y. Zhang, Fixed point properties of semigroups of non-expansive mappings, J. Funct. Anal. 254 (2008), no. 10, 2534–2554.

T.C. Lim, Characterizations of normal structure, Proc. Amer. Math. Soc. 43 (1974), 313–319.

T.C. Lim, A fixed point theorem for families on nonexpansive mappings, Pacific J. Math. 53 (1974), 487–493.

T.C. Lim, On asymptotic centers and fixed points of nonexpansive mappings, Canadian J. Math. 32 (1980), no. 2, 421–430.

T.C. Lim, P.-K. Lin, C. Petalas and T. Vidalis, Fixed points of isometries on weakly compact convex sets, J. Math. Anal. Appl. 282 (2003), no. 1, 1–7.

T. Mitchell, Fixed points of reversible semigroups of nonexpansive mappings, Kodai Math. Sem. Rep. 22 (1970), 322–323.

S. Rajesh and P. Veeramani, Lim’s center and fixed-point theorems for isometry mappings, Ann. Funct. Anal. 9 (2018), no. 2, 190–201.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-03-31

How to Cite

1.
ABHISHEK, Sharma and RAJESH, Sankara Narayanan. Common fixed points in Chebyshev center for a semigroup of isometry mappings. Topological Methods in Nonlinear Analysis. Online. 31 March 2025. Vol. 65, no. 1, pp. 1 - 11. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2024.035.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Sharma Abhishek, Sankara Narayanan Rajesh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop