Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiplicity of solutions to critical p-Laplace equations involving a Hardy potential
  • Home
  • /
  • Multiplicity of solutions to critical p-Laplace equations involving a Hardy potential
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Multiplicity of solutions to critical p-Laplace equations involving a Hardy potential

Authors

  • Diem Hang T. Le
  • Phuong Le https://orcid.org/0000-0003-4724-7118

DOI:

https://doi.org/10.12775/TMNA.2024.029

Keywords

p-Laplace problems, critical Sobolev exponent, Hardy potential, multiplicity, Palais-Smale sequences

Abstract

In this paper, we prove the existence of at least $N$ pairs of nontrivial solutions to the doubly critical quasilinear elliptic problem \[ -\Delta_p u - \frac{\lambda}{|x|^p}|u|^{p-2}u =a(x)|u|^{p-2}u + |u|^{p^*-2}u \] in $\mathbb{R}^N$, as well as in smooth bounded domains, where $1< p< N$, $0< \lambda< (({N-p})/{p})^p$ and $a$ is strictly positive in a small ball. Our results hold under the assumption that $N\ge p^2$ and $\lambda$ and $\|a^+\|_{L^{N/p}}$ are small enough. To circumvent difficulties due to the lack of compactness of the problem, we combine Krasnosel'ski{\u\i}'s genus with a recent classification result by Oliva, Sciunzi, Vaira (J. Math. Pures Appl. {\bf 140} (2020), 89-109) and global compactness results by Li, Guo, Niu (Nonlinear Anal. {\bf 74} (2011), no.\ 4, 1445-1464).

References

B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 9 (2006), 445–484.

U.G. Abdulla and R. eli, Evolution of interfaces for the non-linear parabolic p-Laplacian type reaction-diffusion equations, European J. Appl. Math. 28 (2017), 827–853.

C.O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal. 51 (2002), 1187–1206.

G. Barletta, P. Candito, S.A. Marano and K. Perera, Multiplicity results for critical p-Laplacian problems, Ann. Mat. Pura Appl. (4) 196 (2017), 1431–1440.

V. Benci and G. Cerami, Existence of positive solutions of the equation −∆u + a(x)u = u(N +2)/(N −2) in RN , J. Funct. Anal. 88 (1990), 90–117.

V. Benci, P. D’Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), 297–324.

J. Benedikt, P. Girg, L. Kotrla and P. Takáč, Origin of the p-Laplacian and A. Missbach, Electron. J. Differential Equations (2018), paper no. 16, 17.

M. Bhakta, On the existence and breaking symmetry of the ground state solution of Hardy Sobolev type equations with weighted p-Laplacian, Adv. Nonlinear Stud. 12 (2012), 555–568.

D. Cao, S. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal. 262 (2012), 2861–2902.

G. Cerami, D. Passaseo and S. Solimini, Nonlinear scalar field equations: existence of a positive solution with infinitely many bumps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), 23–40.

M. Clapp and L. Lopez Rios, Entire nodal solutions to the pure critical exponent problem for the p-Laplacian, J. Differential Equations 265 (2018), 891–905.

M. Clapp and T. Weth, Multiple solutions of nonlinear scalar field equations, Comm. Partial Differential Equations 29 (2004), 1533–1554.

M. Degiovanni and S. Lancelotti, Linking solutions for p-Laplace equations with nonlinearity at critical growth, J. Funct. Anal. 256 (2009), 3643–3659.

G. Devillanova and S. Solimini, A multiplicity result for elliptic equations at critical growth in low dimension, Commun. Contemp. Math. 5 (2003), 171–177.

J. I. Dı́az, Nonlinear Partial Differential Equations and Free Boundaries. vol. I: Elliptic Equations, Research Notes in Mathematics, vol. 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.

R. Filippucci, P. Pucci and F. Robert, On a p-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl. (9) 91 (2009), 156–177.

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), 5703–5743.

Y. Li, Q. Guo and P. Niu, Global compactness results for quasilinear elliptic problems with combined critical Sobolev–Hardy terms, Nonlinear Anal. 74 (2011), 1445–1464.

N.E. Mastorakis and H. Fathabadi, On the solution of p-Laplacian for non-Newtonian fluid flow, WSEAS Trans. Math. 8 (2009), 238–245.

C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst. 28 (2010), 469–493.

R. Molle and D. Passaseo, Multiplicity of solutions of nonlinear scalar field equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), 75–82.

R. Musina, Existence and multiplicity results for a weighted p-Laplace equation involving Hardy potentials and critical nonlinearities, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 20 (2009), 127–143.

F. Oliva, B. Sciunzi and G. Vaira, Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential, J. Math. Pures Appl. (9) 140 (2020), 89–109.

K. Perera, A multiplicity result for the scalar field equation, Adv. Nonlinear Anal. 3 (2014), s47–s54.

K. Perera, M. Squassina and Y. Yang, Bifurcation and multiplicity results for critical p-Laplacian problems, Topol. Methods Nonlinear Anal. 47 (2016), 187–194.

P. Pucci and R. Servadei, Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), 505–537.

B. Sciunzi, Classification of positive D1,p (RN )-solutions to the critical p-Laplace equation in RN , Adv. Math. 291 (2016), 12–23.

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.

J. Vétois, A priori estimates and application to the symmetry of solutions for critical p-Laplace equations, J. Differential Equations 260 (2016), 149–161.

Y. Wu and Y. Huang, Infinitely many sign-changing solutions for p-Laplacian equation involving the critical Sobolev exponent, Bound. Value Probl. (2013), paper no. 149, 10.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-02-14

How to Cite

1.
LE, Diem Hang T. and LE, Phuong. Multiplicity of solutions to critical p-Laplace equations involving a Hardy potential. Topological Methods in Nonlinear Analysis. Online. 14 February 2025. Vol. 65, no. 1, pp. 287 - 299. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2024.029.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Diem Hang T. Le, Phuong Le

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop