Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point theory on Banach spheres
  • Home
  • /
  • Fixed point theory on Banach spheres
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Fixed point theory on Banach spheres

Authors

  • Yasunori Kimura https://orcid.org/0000-0003-1861-0432
  • Shuta Sudo https://orcid.org/0000-0002-9196-9823

DOI:

https://doi.org/10.12775/TMNA.2024.018

Keywords

Banach sphere, fixed point theorem, shrinking projection method

Abstract

In this paper, we consider and study the concept of the Banach sphere. The usual spherical distance of the unit sphere of a Hilbert space is defined by its inner product and the inverse of the cosine function. Therefore, we cannot apply this notion to Banach spheres in general. We first introduce a two-variable function like a spherical distance and a notion of convex combination on a Banach sphere. After that, we define a projection onto a subset of a Banach sphere, and prove a fixed point theorem and fixed point approximation for a mapping having a kind of nonspreadingness. Our work is a challenge to construct optimisation theory on spherical planes without geodesics.

References

R. Espı́nola and A. Fernández-León, CAT(k)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), 410–427.

T. Kajimura and Y. Kimura, A new resolvent for convex functions in complete geodesic spaces, RIMS Kôkyûroku 2112 (2019), 141–147.

Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl.18 (2016), 93–115.

Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear Nonlinear Anal. 3 (2017), 133–148.

Y. Kimura and K. Satô, Convergence of subsets of a complete geodesic space with curvature bounded above, Nonlinear Anal. 75 (2012), 5079–5085.

Y. Kimura and K. Satô, Two convergence theorems to fixed point of a nonexpansive mapping on the unit sphere of a Hilbert space, Filomat 26 (2012), 949–955.

H. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008), 166–177.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276–286.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-25

How to Cite

1.
KIMURA, Yasunori and SUDO, Shuta. Fixed point theory on Banach spheres. Topological Methods in Nonlinear Analysis. Online. 25 September 2024. Vol. 64, no. 2, pp. 655 - 673. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2024.018.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Yasunori Kimura, Shuta Sudo

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop