Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

p(x)-biharmonic equations involving (h,r(x))-Hardy singular coefficients with no-flux boundary conditions
  • Home
  • /
  • p(x)-biharmonic equations involving (h,r(x))-Hardy singular coefficients with no-flux boundary conditions
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

p(x)-biharmonic equations involving (h,r(x))-Hardy singular coefficients with no-flux boundary conditions

Authors

  • Jian Liu https://orcid.org/0000-0003-4685-5373
  • Zengqin Zhao https://orcid.org/0000-0001-8528-1785

DOI:

https://doi.org/10.12775/TMNA.2024.016

Keywords

p(x)-biharmonic equations, (h, r(x))-Hardy potentials, variable exponent spaces

Abstract

In this article, we investigate $p(x)$-biharmonic equations involving two kinds of different Hardy potentials, in which the $r(x)$-Hardy potentials are seldom mentioned in previous papers. New criteria for the existence of generalized solutions are reestablished when the nonlinear terms satisfying appropriate assumptions. The results are based on variational methods and the theory of variable exponent Sobolev spaces.

References

S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions. Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations, Atlantis Press, Paris, 2015.

G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal. 1 (2012), 205–220.

G. Bonanno, A. Chinnı̀ and V.D. Rǎdulescu, Existence of two non-zero weak solutions for a p( · )-biharmonic problem with Navier boundary conditions, Rend. Lincei Mat. Appl. 34 (2023), 727–743.

G. Bonanno and G. D’Aguı̀, Two non-zero solutions for elliptic Dirichlet problems, Anal. Anwend. 35 (2016), 449–464.

D.G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser, Boston, 2007.

E.B. Davies and A.M. Hinz, Explicit constants for Rellich inequalities in Lp (Ω), Math. Z. 227 (1998), 511–523.

A.R. El Amrouss and A. Ourraoui, Existence of solutions for a boundary problem involving p(x)-biharmonic operator, Bol. Soc. Paran. Mat. 31 (2013), 179–192.

X.L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), 464–477.

X.L. Fan and D. Zhao, Sobolev embedding theorems for spaces W k,p(x) , J. Math. Anal. Appl. 262 (2001), 749–760.

X.L. Fan and D. Zhao, On the spaces Lp(x) and W m,p(x) , J. Math. Anal. Appl. 263 (2001), 424–446.

T.C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.

K. Kefi and V.D. Rǎdulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys. 8 (2017), 1–13.

M. Khodabakhshi, A.M. Aminpour, G.A. Afrouzi and A. Hadjian, Existence of two weak solutions for some singular elliptic problems, Racsam. Rev. R. Acad. A. 110 (2016), 385–393.

J. Liu and Z. Zhao, Existence of triple solutions for elliptic equations driven by pLaplacian-like operators with Hardy potential under Dirichlet–Neumann boundary conditions, Bound. Value Probl. 2023 (2023), no. 3.

J. Liu and Z. Zhao, Leray–Lions type p(x)-biharmonic equations involving Hardy potentials, Appl. Math. Lett. 149 (2024), 108907.

V.D. Rǎdulescu and D.D. Repovš, Combined effects for non-autonomous singular biharmonic problems, Discrete Cont. Dyn. Syst. 13 (2020), 2057–2068.

J. Simon, Régularité de la solution d́une équation non linéaire dans RN , (P. Benilan, J. Robert, eds.) Journées d’Analyse Non Linéaire, Lecture Notes in Mathematics, vol. 665, Springer, Berlin, 1978, pp. 205–227.

L.S. Tavares and J.V.C. Sousa, Multiplicity results for a system involving the p(x)Laplacian operator, Appl. Anal. 102 (2021), 1271–1280.

W. Winslow, Induced fibration of suspensions, J. Appl. Phys. 20 (1949), 1137–1140.

A.B. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces, Nonlinear Anal. 69 (2008), 3629–3636.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-21

How to Cite

1.
LIU, Jian and ZHAO, Zengqin. p(x)-biharmonic equations involving (h,r(x))-Hardy singular coefficients with no-flux boundary conditions. Topological Methods in Nonlinear Analysis. Online. 21 September 2024. Vol. 64, no. 2, pp. 561 - 576. [Accessed 16 December 2025]. DOI 10.12775/TMNA.2024.016.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Jian Liu, Zengqin Zhao

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop