Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Optimal control, well-posedness and sensitivity analysis for a class of generalized evolutionary systems
  • Home
  • /
  • Optimal control, well-posedness and sensitivity analysis for a class of generalized evolutionary systems
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

Optimal control, well-posedness and sensitivity analysis for a class of generalized evolutionary systems

Authors

  • Xiuwen Li
  • Zhi Luo
  • Zhenhai Liu https://orcid.org/0000-0001-6022-1970

DOI:

https://doi.org/10.12775/TMNA.2023.036

Keywords

Optimal control, well-posedness, sensitivity analysis, fractional evolution inclusion, mixed variational-hemivariational inequality

Abstract

In this paper, we are concerned with a generalized evolution dynamical system, called fractional differential variational-hemivariational inequality (FDVHVI, for short), which is composed of a nonlinear fractional evolution inclusion and a time-dependent mixed variational-hemivariational inequality in the framework of Banach spaces. The objective of this paper is four fold. The first one is to investigate the nonemptiness as well as the compactness of the mild solutions set to the FDVHVI. The second aim is to study the optimal control problems described by the FDVHVI. The third goal is to establish the well-posedness results of the FDVHVI, including the existence, uniqueness, and stability. Furthermore, the sensitivity analysis of a perturbed problem associated to the FDVHVI with respect to the initial state and the two parameters is also obtained. Finally, a comprehensive fractional model is given to illustrate the validity of our main results.

References

X.J. Chen and Z.Y. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program. 146 (2014), 379–408.

C. Christof, Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities, SIAM J. Control Optim. 57 (2019),no. 1, 192–218.

F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519–537.

L. Gasińsk and N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006.

S.C. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I, Theory, Kluwer Academic Publishers, Dordrecht Boston, London, 1997.

M. Kamenskiı̆, V. Obukhovskiı̆ ND P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space, Walter de Gruyter, Berlin, 2001.

T.D. Ke, N.V. Loi and V. Obukhovskiı̆, Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal. 18 (2018), 531–553.

A.A. Kilbas, H.M. Srivastav and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, 2006.

X.W. Li, Y.X. Li, Z.H. Liu and J. Li, Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions, Fract. Calc. Appl. Anal. 21 (2018), no. 6, 1439–1470.

X.W. Li and Z.H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim. 56 (2018), no. 5, 3569–3597.

X.Y. Liu and Z.H. Liu, On the “bang-bang” principle for a class of fractional semilinear evolution inclusions, Proc. Roy. Soc. Edinburgh Sect. A Math. 144 (2014), no. 2, 333–349.

Y.J. Liu, Z.H. Liu and N.S. Papageorgiou, Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational-hemivariational inequalities, J. Differential Equations 342 (2023), 559–595.

Z.H. Liu, N.V. Loi, V. Obukhovskiı̆, Existence and global bifurcation of periodic solutions to a class of differential variational inequalities, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013).

Z.H. Liu, S. Migórski and S.D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations 263 (2017), 3989–4006.

Z.H. Liu, D. Motreanu and S.D. Zeng, On the well-posedness of differential mixed quasivariational-inequalities, Topol. Methods Nonlinear Anal. 51 (2018), 135–150.

Z.H. Liu, D. Motreanu and S.D. Zeng, Generalized penalty and regularization method for differential variational-hemivariational inequalities, SIAM J. Optim. 31(2) (2021), 1158–1183.

Z.H. Liu and N.S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J. Differential Equations 316 (2022), no. 15, 249–269.

Z.H. Liu, S.D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations 260 (2016), 6787–6799.

Z.H. Liu, S.D. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal. 7 (2018), no. 4, 571–586.

N.V. Loi, T.D. Ke, V. Obukhovskiı̆ and P. Zecca, Topological methods for some classes of differential variational inequalities, J. Nonlinear Convex Anal. 17 (2016), 403–419.

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26, Springer, New York, 2013.

S. Migórski and S.D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Global Optim. 72 (2018), 761–779.

S. Migórski and S.D. Zeng, A class of generalized evolutionary problems driven by variational inequalities and fractional operators, Set-Valued Var. Anal. 27 (2019), 949–970.

J.S. Pang and D.E. Stewart, Differential variational inequalities, Math. Program. 113 (2008), 345–424.

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer–Verlag, New York, 1983.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

S.D. Zeng, Z.H. Liu and S. Migórski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys. 69 (2018), DOI:10.1007/s00033-018-0929-6.

S.D. Zeng, S. Migórski and Z.H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31 (2021), no. 4, 2829–2862.

J. Zhao, J. Chen and Z.H. Liu, Second order evolutionary problems driven by mixed quasi-variational chemivariational inequalities, Commun. Nonlinear Sci. Numer. Simulat. 120 (2023), 107192 ,14 pp.

J. Zhao, Z.H. Liu, E. Vilches, C.F. Wen and J-C Yao, Optimal control of an evolution hemivariational inequality involving history-dependent operators, Commun. Nonlinear Sci. Numer. Simulat. 103 (2021), 105992, 17 pp.

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 (2010), 1063–1077.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-06-16

How to Cite

1.
LI, Xiuwen, LUO, Zhi and LIU, Zhenhai. Optimal control, well-posedness and sensitivity analysis for a class of generalized evolutionary systems. Topological Methods in Nonlinear Analysis. Online. 16 June 2024. Vol. 63, no. 2, pp. 687 - 716. [Accessed 3 July 2025]. DOI 10.12775/TMNA.2023.036.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Xiuwen Li, Zhi Luo, Zhenhai Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop