Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the fractional-in-time Keller-Segel model via Sonine kernels
  • Home
  • /
  • On the fractional-in-time Keller-Segel model via Sonine kernels
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

On the fractional-in-time Keller-Segel model via Sonine kernels

Authors

  • Masterson Costa https://orcid.org/0000-0002-6466-539X
  • Claudio Cuevas https://orcid.org/0000-0003-2862-3229
  • Clessius Silva https://orcid.org/0000-0001-5122-2488
  • Herme Soto https://orcid.org/0009-0001-8955-483X

DOI:

https://doi.org/10.12775/TMNA.2023.035

Keywords

Sonine kernels, existence, asymptotic behavior, diffusion, chemotaxis aggregation, Keller-Segel model

Abstract

In this paper, we study the existence and asymptotic behavior to a diffusion system which is non-local in time. As consequence of our theorems we deduce new results for the fractional-in-time Keller-Segel model. Our approach is intimately related with the Sonine kernels.

References

H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (1984), no. 4, 593–676.

A. Atangana and S.T.A. Badr, Analysis of the Keller–Segel model with a fractional derivative without singular kernel, Entropy 17 (2015), 4439–4453.

J. Azevedo, M. Bezerra, C. Cuevas and H. Soto, Well-posedness and asymptotic behavior for the fractional Keller–Segel system in critical Besov–Herz-type spaces, Math. Meth. Appl. Sci. 45 (2022), 6268–6287.

J. Azevedo, C. Cuevas, J. Dantas and C. Silva, On the fractional chemotaxis Navier–Stokes system in the critical spaces, Discrete Contin. Dyn. Syst. Ser. B 28 (2023), no. 1, 538–559.

J. Azevedo, C. Cuevas and E. Henriquez, Existence and asymptotic behaviour for the time-fractional Keller–Segel model for chemotaxis, Math. Nachr. 292 (2019), 462–480.

J. Azevedo, J.C. Pozo and A. Viana, Global solutions to the non-local Navier–Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 27 (2022), no. 5, 2515–2335.

M. Bezerra, C. Cuevas, C. Silva, and H. Soto, On the fractional doubly parabolic Keller–Segel system modelling chemotaxis, Sci. China Math. 65 (2022), 1827–1874.

A. Blanchet, J.A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak–Keller–Segel mode in R2 , Comm. Pure Appl. Math. 61 (2008), no. 10, 1449–1481.

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006), 1–32.

N. Bournaveas and V. Calvez, The one-dimensional Keller–Segel model with fractional diffusion of cells, Nonlinearity 23 (2010), 923–925.

R. Carlone, A. Fiorenza and L. Tentarelli, The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions, J. Funct. Anal. 273 (2017), no. 3, 1258–1294.

P. Clément and J.A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal. 12 (1981), 514–534.

C. Cuevas, C. Silva and H. Soto, On the time-fractional Keller–Segel model for chemotaxis, Math. Meth. Appl. Sci. 43 (2020), 769–798.

A.M.A. El-Sayed, S.Z. Rida and A.A.M. Arafa, On the solutions of time-fractional bacterial chemotaxis in a diffusion gradient chamber, Int. J. Nonlinear Sci. 7 (2009), no. 4, 485–492.

L. Guo, F. Gao and H. Zhan, Existence, uniqueness and L∞ -bound for weak solutions of a time fractional Keller–Segel system, Chaos Solitons Fractals 160 (2022), 112185.

M.A. Herrero and J.J.L. Velázquez, Chemptatic collapse for the Keller–Segel model, J. Math. Biol. 35 (1996), 177–194.

T. Hillen and K.J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183–217.

D. Horstmann, On the existence of radially symmetric blowup solutions for the Keller–Segel model, J. Math. Biol. 44 (2002), 463–478.

D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver. 105 (2003), no. 3, 103–165.

D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II, Jahresber. Dtsch. Math.-Ver. 106 (2004), no. 2, 51–69.

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), 52–107.

Z. Jiang and L. Wang, Mild solutions to the Cauchy problem for time-space fractional Keller–Segel–Navier–Stokes system (2022), arXiv: 2209.12171v2.

E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415.

J. Kemppainen, J. Siljander, V. Vergara and R. Zacher, Decay estimates for timefractional and other non-local in time subdiffusion equations in Rd , Math. Ann. 366 (2016), 941–979.

A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl. 340 (2008), no. 1. 252–281.

S. Kumar, A. Kumar and I.K. Argyros, A new analysis for the Keller–Segel model of fractional order, Numer. Algorithms 75 (2017), 213–228.

T.A.M. Langlands and B.I. Henry, Fractional chemotaxis diffusion equations, Phys. Rev. E 81 (2010), no. 5, 1–12.

M. Naghibolhosseini, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, Ph.D. thesis, City University of New York, New York, 2015.

A.T. Nguyen, N.H. Tuan, and C. Yang, On Cauchy problem for fractional parabolicelliptic Keller–Segel model, Adv. Nonlinear Anal. 12 (2023), 97–116.

J.E. Pérez-López, D.A. Rueda-Gómez and E.J. Villamizar-Roa, Existence and uniqueness of global solutions for time fractional Keller–Segel system and fractional dissipation (2022), ArXiv: 2204.13813v1.

M.T. Widman, D. Emerson and C.C. Chiu, Modeling microbial chemotaxis in a diffusion gradient chamber, Biotechnol. Bioeng. 55 (1997), 191–205.

M. Zayernouri and A. Matzavinos, Fractional Adams–Bashforth/Moulton methods: An application to the fractional Keller–Segel chemotaxis system, J. Comput. Phys. 317 (2019), 1–14.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-06-16

How to Cite

1.
COSTA, Masterson, CUEVAS, Claudio, SILVA, Clessius and SOTO, Herme. On the fractional-in-time Keller-Segel model via Sonine kernels. Topological Methods in Nonlinear Analysis. Online. 16 June 2024. Vol. 63, no. 2, pp. 661 - 685. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.035.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Masterson Costa, Claudio Cuevas, Clessius Silva, Herme Soto

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop